
Statistical Methods in Image Processing EE-048954

Homework 1: Kernel Density Estimation and Normalizing Flows

Due Date: May 08, 2022

Submission Guidelines
Submission only in pairs on the course website (Moodle).
Working environment:

We encourage you to work in Jupyter Notebook online using Google Colab as it does not require any
installation.

You should submit two separated files:
A .ipynb file, with the name: ee048954_hw1_id1_id2.ipynb which contains your code implementations.
A .pdf file, with the name: ee048954_hw1_id1_id2.pdf which is your report containing plots, answers, and
discussions.
No handwritten submissions and no other file-types (.docx , .html , ...) will be accepted.

Mounting your drive for saving/loading stuff

Importing relevant libraries for Part I

Part I: Kernel Density Estimation (30 points)
The multivariate kernel density estimate of a density given a set of samples is given by

where is a bandwidth matrix, is the kernel and are samples drawn from .

Task 1. Consider the following density functions:

Gaussian Mixture:

In []: from google.colab import drive
drive.mount('/content/drive')

In []: ## Standard libraries
import os
import math
import time
import numpy as np
import copy

Imports for plotting
import matplotlib.pyplot as plt
%matplotlib inline
import matplotlib
matplotlib.rcParams['lines.linewidth'] = 2.0
plt.style.use('ggplot')

f(x) {xi}

f̂ (x) =
N

∑
i=1

K(H−1(xi − x)),
1

N

1

|H|

H K(⋅) {xi}Ni=1 i.i.d. f(x)

f(x;σ, {μi}) =
M

∑
m=1

exp{− ||x − μi||
2},

1

2πσ2

1

M

1

2σ2

https://colab.research.google.com/

with , , and .
Gaussian Mixture with , , and .
Spiral with and .

For each of the three distributions above, implement a function that draws samples from .
Display the drawn samples for each distribution separately.

Task 2. Implement a function that accepts samples and a bandwidth matrix and estimates using
multivariate kernel density estimation. Use the two-dimension separable kernel where

.

Task 3. For each distribution, compare between and using the bandwidth matrices with

. and display the estimation. Discuss the trade-off of the choice of .

Task 4. Which of the distributions was the easiest/hardest to estimate? Why?

Importing additional relevant libraries for Part II

Part II: Invertible Neural Networks (70 points)
In this part, we will take a closer look at invertible neural networks, otherwise known as Normalizing Flows. The most
popular, current application of normalizing flows is to model datasets of images. In this part, we will implement a type of
flows called Coupling Flows for a simplified problem of sampling from toy 2D datasets, although similar concepts (with
deeper models + tricks) can be used to model images.

General Concept
Recall that given a random vector with a density (e.g. Gaussian) and an invertible function , the density
of is given by:

Toy Datasets
The provided function sample_2d_datasets samples from 4 different toy datasets that we will use for this part to
experiment with NFs. The supported options in this function are {'Circles', 'Moons', 'GaussiansGrid',

M = 4 σ = 1
2

{μm} = {(0, 0)T , (0, 2)T , (2, 0)T , (2, 2)T}

M = 4 σ = 1 {μm} = {(0, 0)T , (0, 2)T , (2, 0)T , (2, 2)T}

θ ∼ U[0, 4π] r|θ ∼ N (, 0.25)θ

2

N = 10000 xi f(x)

{xi} H f̂ (x)

K(u) = k(u1)k(u2)

k(u) = exp{ }1

√2π

−u2

2

f(x) f̂ (x) H = (h 0

0 h
)

h = 0.1, 0.5, 1 h

In []: ## Scikit-learn built-in dataset generators
from sklearn.datasets import make_moons, make_circles, make_blobs

Progress bar
import tqdm

PyTorch
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader, random_split
from torch.optim import Adam
from torch.distributions.multivariate_normal import MultivariateNormal

Traning will be done on CPU for this homework.
For K=4, N=1500, epochs=1000 takes < 3 mins.
device = torch.device("cpu")
print("Using device", device)

Z pZ(z) f pX(x)

X = f(Z)

log pX(x) = log pZ(f−1(x)) + log
∣
∣
∣
det

∣
∣
∣

df−1(x)

dx

'GaussiansRot'} , where for the last distribution 'GaussiansRot' , the function supports a varying number of
gaussians using the parameter num_gaussians .

Task 1. To get acquainted with this function, for each of the 4 distributions above, draw samples .
Display the drawn samples for each distribution in a separate plot.

For convience purposes, we wrap the function sample_2d_datasets with a torch.utils.data.Dataset class, and
implement the methods __len__ and __getitem__ to sample batches afterward with dataloaders when we train our
models.

Coupling Layers
Next, we look at possible transformations to apply inside the flow, focusing on the simplest and most efficient one. A
recent popular flow layer, which works well in combination with deep neural networks, is the coupling layer introduced
by Dinh et al.. The input is arbitrarily split into two parts, and , of which the first remains unchanged by the
flow. Yet, is used to parameterize the transformation for the second part, . In this coupling layer, we apply an
affine transformation by scaling the input by and shifting it by . In other words, our transformation looks as
follows:

In []: def sample_2d_datasets(dist_type, num_samples=1000, seed=0, num_gaussians=5):
 """
 function samples from simple pre-defined distributions in 2D.
 Inputs:
 - dist_type: str specifying the distribution to be chosen from:
 {'Circles', 'Moons', 'GaussiansGrid', 'GaussiansRot'}
 - num_samples: Number of samples to draw from dist_type (int).
 - seed: Random seed integer.
 - num_gaussians: Number of rotated gaussians if dist_type='GaussiansRot'.
 (relevant only for dist_type='GaussiansRot', should be a keyword argument)
 Outputs:
 - data (np.array): array of num_samplesx2 samples from dist_type
 """
 np.random.seed(seed)
 if dist_type == 'Circles':
 data = make_circles(num_samples, noise=.1, factor=.8, random_state=seed, shuffle=True)[0]
 elif dist_type == 'Moons':
 data = make_moons(num_samples, noise=.1, random_state=seed, shuffle=True)[0]
 elif dist_type == 'GaussiansGrid':
 centers = np.array([[0,0],[0,2],[2,0],[2,2]])
 data = make_blobs(num_samples, centers=centers, cluster_std=.5, random_state=seed, shuffle=True)[0]
 elif dist_type == 'GaussiansRot':
 angles = np.linspace(0, 2 * np.pi, num_gaussians, endpoint=False)
 centers = np.stack([2.5 * np.array([np.cos(angle), np.sin(angle)]) for angle in angles])
 data = make_blobs(num_samples, centers=centers, cluster_std=np.sqrt(.1), random_state=seed, shuffle=Tr
 else:
 raise NotImplementedError
 return data

N = 1000 xi

In []: class ToyDataset(Dataset):
 def __init__(self, dist_type, num_samples=1000, seed=0, num_gaussians=5):
 """
 Wrapper around the function "sample_2d_datasets" to allow iterating
 batches using a datalaoder when training our normalizing flow model.
 """
 self.data = sample_2d_datasets(dist_type, num_samples, seed, num_gaussians)
 self.num_samples = num_samples

 def __len__(self):
 return self.num_samples

 def __getitem__(self, index):
 return torch.from_numpy(self.data[index]).type(torch.FloatTensor)

x x1:j xj+1:d

x1:j xj+1:d

s t y = f(x)

https://arxiv.org/abs/1605.08803

 is the output of the flow layer, the functions and are implemented as neural networks, and the sum and
multiplication are performed element-wise. Here's a block diagram that visualize the coupling layer in the form of a
computation graph:

For convience, since we train using the log-density, it is common practice to apply an exponential on the predicted
scaling factor prior to multiplication with , as this simplifies the calculation of the log-determinant of the Jacobian
that we will derive shortly. Hence, the implemented transformation in practice is usually:

Task 2. Write down the inverse of this layer for some . Draw the inverse function as a
computational graph that has as input and as output.

Task 3. Write down the Jacobian of this layer . Do you recognize a special structure in this matrix?

Task 4. Write down the explicit expression for the log-determinant of the Jacobian matrix from the previous section.

Task 5. Write down the explicit expression for the log-determinant of the Jacobian matrix of the inverse function .

In our implementation, we will realize the splitting of variables as masking. The variables to be transformed, , are
masked when passing to the networks to predict the transformation parameters and . Also, afterward
when applying the transformation (don't forget to exponentiate the scaling!), we mask the parameters for so that we
have an identity operation for those variables.

For predicting the shifting and scaling parameters for our toy datasets we will be using neural networks with 3 Fully
Connected layers with LeakyReLU activations in between. Additionally, for stabilization purposes, we multiply the scaling
output prior to exponentiation with a learnable parameter per dimension scale_factor initialized to 0.
Meaning, our scaling is initialized to 1 as . This prevents sudden large scaling values that can destabilize
training (especially in the beginning).

The functions , , and scale_factor are already implemented in the provided class CouplingLayer below
for your convinience.

Task 6. Implement missing forward and inverse methods in the class CouplingLayer :

The forward method should take in x and use the mask self.mask and the learnable functions
self.s_func , self.scale_factor and self.t_func to predict the transformation parameters and compute
y . This method should also return the parameter log_det_jac which is the log-determinant of the Jacobian.

y1:j = x1:j

yj+1:d = sθ1(x1:j) ⊙ xj+1:d + tθ2(x1:j)

y s t

xj+1:d

y1:j = x1:j

yj+1:d = exp(sθ1(x1:j)) ⊙ xj+1:d + tθ2(x1:j)

x = f−1(y) x, y ∈ R
d f−1(y)

y x

dy

dx

dx

dy

xj+1:d

x sθ1(x1:j) tθ2(x1:j)

x1:j

sθ1(x1:j)

exp(0) = 1

sθ1(⋅) tθ2(⋅)

The inverse method goes in the other direction. It takes in y and uses self.mask , self.s_func ,
self.scale_factor and self.t_func to compute x . This method should also return the parameter
inv_log_det_jac which is the log-determinant of the Jacobian of .

Coupling Flows
As you might have guessed by now, a coupling layer is powerful yet still limited in its ability to significantly alter the
input. This is because it only operates on a chunk of it with element-wise manipulations due to the invertability
constraint. We can go on with making our function more complex. How can we implement more complex invertible
functions? The answer is: invertible function composition. We can stack multiple invertible functions (e.g.
Coupling Layers) after each other, as all together, they still represent a single, invertible function. Specifically, if
and are invertible functions, then is an invertible function and its inverse is given by

. More importantly, the calculation of the log-determinant of the Jacobian in this case is simple using the chain
rule.

Task 7. Assuming and are coupling layers, calculate the log-determinant of the Jacobian .

How is it related to the log-determinant of the Jacobians and ?

Coupling layers generalize to any masking technique we could think of. However, the most common approach is to split
the input in half using the mask. For our toy 2D datasets comprised of samples , this means that
either , or . These correspond to masks and
respectively. Note that when we apply multiple coupling layers, we invert the masking every other layer so that each
variable is transformed a similar amount of times.

Intuition in 1D

f−1(⋅)

In []: class CouplingLayer(nn.Module):
 def __init__(self, mask):
 super(CouplingLayer, self).__init__()

 # mask for splitting (fixed not learnable)
 self.mask = nn.Parameter(mask, requires_grad=False)

 # scaling function and stabilizing scale_factor init. to 0
 self.s_func = nn.Sequential(nn.Linear(in_features=2, out_features=32),
 nn.LeakyReLU(),
 nn.Linear(in_features=32, out_features=32),
 nn.LeakyReLU(),
 nn.Linear(in_features=32, out_features=2))
 self.scale_factor = nn.Parameter(torch.Tensor(2).fill_(0.0))

 # shifting function
 self.t_func = nn.Sequential(nn.Linear(in_features=2, out_features=32),
 nn.LeakyReLU(),
 nn.Linear(in_features=32, out_features=32),
 nn.LeakyReLU(),
 nn.Linear(in_features=32, out_features=2))

 def forward(self, x):
 """
 TODO: replace y and log_det_jac with your code.
 """
 y, log_det_jac = None, None
 return y, log_det_jac

 def inverse(self, y):
 """
 TODO: replace x and inv_log_det_jac with your code.
 """
 x, inv_log_det_jac = None, None
 return x, inv_log_det_jac

f

f1, … , fK
y = f1(z)

x = f2(y) x = f2 ∘ f1(z)

f
−1
1 ∘ f

−1
2

y = f1(z) x = f2(y) dx

dz
dy

dz

dx

dy

x x = (px, py) ∈ R
d=2

{x1:j = px, xj+1:d = py} {x1:j = py, xj+1:d = px} [1, 0]T [0, 1]T

Intuitively, using multiple, learnable invertible functions, a normalizing flow attempts to transform slowly into a
more complex distribution which should finally be . We visualize the idea below (figure credit - Lilian Weng):

Starting from , which follows the prior Gaussian distribution, we sequentially apply the invertible functions
, until represents .

Implementation

Using the CouplingLayer class from above, here we will implement a class named CouplingFlow that is comprised
of stacked coupling layers. This class will have the following attributes:

num_layers - a scalar passed at initialization that will determine the number of coupling layers to stack, refered to
later as .
self.layers - a Module list comprised of stacked coupling layers each with its own mask. Note that the masks

are fixed and non-learnable therefore we set their requires_grad property to False inside CouplingLayer .
self.prior - This is the prior/base distribution. Here we will use a standard Gaussian distribution with a unit

variance per dimension implemented using the torch.distributions module.

Task 8. Implement the following 3 methods of this class:

log_probability - method that takes in a batch of samples x and returns log_prob which is their log-
probability . For convinience we will assume the overall function satisfies .
Hence, to calculate the log-probability you should employ the inverse functions starting from the last layer
(assuming layers).
sample_x - method that takes in a parameter num_samples and returns samples x from alongside their

log-probability values log_prob .
sample_x_each_step - method takes in a parameter num_samples and returns a list of samples samples after

each intermediate coupling layer in self.layers . The first element of this list is samples from the prior
distribution and the last element is samples from .

pz(z)

px(x)

z0

f1, f2, . . . , fK zK x

K

K

log p(x) f = fK ∘ fK−1 ⋯ ∘ f1 x = f(z)

f
−1
i f

−1
K

K

p(x)

p(z) p(x)

In []: class CouplingFlow(nn.Module):
 def __init__(self, num_layers):
 super(CouplingFlow, self).__init__()

 # concatenate coupling layers with alternating masks
 masks = F.one_hot(torch.tensor([i % 2 for i in range(num_layers)])).float()
 self.layers = nn.ModuleList([CouplingLayer(mask) for mask in masks])

 # define prior distribution to be z~N(0,I)
 self.prior = MultivariateNormal(torch.zeros(2),torch.eye(2))

 def log_probability(self, x):
 """
 TODO: replace log_prob with your code.
 """
 log_prob = None
 return log_prob

https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

Training Coupling Flows
Now that we have finished implementing the flow model, we can start training it. Provided below is an already
implemented function train to train your CouplingFlow models. The function recieves 4 arguments:

model - an instance of the class CouplingFlow .
data - an instance of the class ToyDataset .
epochs - number of epochs to train the model (int).
batch_size - the batch size to use in training (int).

 def sample_x(self, num_samples):
 """
 TODO: replace x and log_prob with your code.
 """
 x, log_prob = None, None
 return x, log_prob

 def sample_x_each_step(self, num_samples):
 """
 TODO: replace samples with your code.
 """
 samples = None
 return samples

In []: # detach tensor and transfer to numpy
def to_np(x):
 return x.detach().numpy()

Simple training function
def train(model, data, epochs = 100, batch_size = 64):

 # move model into the device
 model = model.to(device)

 # split into training and validation, and create the loaders
 lengths = [int(len(data)*0.9), len(data) - int(len(data)*0.9)]
 train_set, valid_set = random_split(data, lengths)
 train_loader = DataLoader(train_set, batch_size=batch_size)
 valid_loader = DataLoader(valid_set, batch_size=batch_size)

 # define the optimizer and scheduler
 optimizer = Adam(model.parameters(), lr=1e-3)

 # train the model
 train_losses, valid_losses, min_valid_loss = [], [], np.Inf
 with tqdm.tqdm(range(epochs), unit=' Epoch') as tepoch:
 for epoch in tepoch:

 # training loop
 epoch_loss = 0
 model.train(True)
 for batch_index, training_sample in enumerate(train_loader):
 log_prob = model.log_probability(training_sample)
 loss = - log_prob.mean(0)
 optimizer.zero_grad()
 loss.backward()
 optimizer.step()
 epoch_loss += loss
 epoch_loss /= len(train_loader)
 train_losses.append(np.copy(to_np(epoch_loss)))

 # validation loop
 epoch_loss_valid = 0
 model.train(False)
 for batch_index, valid_sample in enumerate(valid_loader):
 log_prob = model.log_probability(valid_sample)
 loss_valid = - log_prob.mean(0)

Here is an example snippet for using this function to train a flow model with layers on a dataset of
samples from the 'Moons' distribution for 1000 epochs:

Task 9. For each of the 4 provided distributions (use the default value of num_gaussians=5 for
'GaussiansRot'), use a similar snippet to repeat the following:

Create a ToyDataset instance with samples from the distribution.
Learn a CouplingFlow model with layers, by training for 500 epochs. For the 'Moons' dataset train for
1000 epochs.
Plot the estimated density in . To achieve this, use the method log_probability to calculate the log-
probability at a pre-determined grid of points (e.g. using
np.meshgrid). Sample each coordinate with at least 100 points (i.e. a grid of positions in 2D). Plot the

resulting 2D distribution as an image where the value in each pixel is .
Plot samples from intermediate flow layers, including the prior and the modelled . To achieve this, use the
method sample_x_each_layer with samples. Plot the resulting samples from each layer in the same
axis limits to visualize the transformation of each coupling layer separately. You can use plt.subplot(...,
sharex=True, sharey=True) to achieve link the axis of all subplots.

Implementation tips:

 epoch_loss_valid += loss_valid

 epoch_loss_valid /= len(valid_loader)
 valid_losses.append(np.copy(to_np(epoch_loss_valid)))

 # save best model based off validation loss
 if epoch_loss_valid < min_valid_loss:
 model_best = copy.deepcopy(model)
 min_valid_loss = epoch_loss_valid
 epoch_min = epoch

 # report progress with tqdm pbar
 tepoch.set_postfix(train_loss=to_np(epoch_loss), valid_loss=to_np(epoch_loss_valid))

 # report best model on val.
 print('\n Best Model achieved {:.4f} validation loss at epoch {} \n'.
 format(min_valid_loss, epoch_min))

 # if the number of samples is too low take the final weights regardless of
 # valdiation loss due to weak statistics (overfitting avoided by early stopping)
 if lengths[1] < 500:
 model_best = model

 return model_best, train_losses, valid_losses

K = 4 N = 1500

xi

In []: # seeds to ensure reproducibility
torch.manual_seed(8)
np.random.seed(0)

dataset
num_samples = 1500
data = ToyDataset('Moons', num_samples=num_samples)

learning hyper-parameters
K = 4
nepochs = 1000

instantiate model and optimize the parameters
Flow_model = CouplingFlow(num_layers=K)
moon_model, train_loss, valid_loss = train(Flow_model, data, epochs=nepochs)

N = 1500

K = 4

p(x) R
2

log p(x) x ∈ [xmin,xmax] × [ymin, ymax] ⊂ R
2

100 × 100

p(x) = exp(log p(x)) p(x)

p(z) p(x)

N = 1000

Use the same seeds as the example snippet for reproducibility. This will also ensure a non-diverging erroneous
behavior with other seeds.
To make sure the model is not overfitting you can look at the training and the valdiation loss outputs of the provided
function train . Do not include these in your report, use them just for sanity check.
Estimate the log-probability in a reasonable vicinity of the training domain. For far away coordinates from the
training data, the estimation could be poor locally and might bias the dynamic range of your plot.
To avoid code duplication, you are encouraged to implement two plotting functions: one for plotting the density,
and one for plotting the transformations across layers.

Analyzing Coupling Layers

Task 10. Train two flow models with a varying number of coupling layers for 250 epochs, using
 samples from the 'GaussiansRot' dataset with num_gaussians=5 . Compare the resulting estimated

density (using a grid of points) and the intermediate distributions of samples throughout the
coupling layers of the model. Which model fits better? What do you conclude regarding the effect of model depth?
explain the result in your report and attach the resulting plots.

Task 11. Train two flow models with layers for 400 epochs, using a varying number of
samples from the 'GaussiansRot' dataset with num_gaussians=5 . Compare the resulting estimated density
(using a grid of points) and the intermediate distributions of samples throughout the coupling
layers of the model. Which model fits better? What do you conclude regarding the effect of training set size?
explain the result in your report and attach the resulting plots.

Task 12. Train two flow models with layers for 250 epochs, using samples from the
'GaussiansRot' dataset with a varying number of Gaussians num_gaussians . Compare the resulting

estimated density (using a grid of points) and the intermediate distributions of samples
throughout the coupling layers of the model. Which distribution is fitted better by the model? What do you
conclude regarding the effect of data complexity? explain the result in your report and attach the resulting plots.

Conclusion
In conclusion, we have seen how to implement our own normalizing flow on toy 2D datasets. However, as mentioned in
the beginning of Part II, similar models with significantly more layers and additional tricks can be used to model images
(e.g. Glow). The most common flow element, the coupling layer, is simple to implement, and yet effective. Normalizing
flows are an interesting generative model compared to GANs, as they allow an exact likelihood estimate in continuous
space, and we have the guarantee that every possible input has a corresponding latent vector . Recent advances in
Neural ODEs allow a flow with infinite number of layers, called Continuous Normalizing Flows, whose potential is yet to
fully explore.

References and Credits
[1] Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2017). “Density estimation using Real NVP,” In: 5th International Conference
on Learning Representations, ICLR 2017. Link

[2] Kingma, D. P., and Dhariwal, P. (2018). “Glow: Generative Flow with Invertible 1x1 Convolutions,” In: Advances in
Neural Information Processing Systems, vol. 31, pp. 10215--10224. Link

[3] University of Amsterdam, Deep Learning 1, Tutorial 11. Link

[4] Technical University of Munich, Machine Learning for Graphs and Sequential Data, Generative Models. Link

K = {2, 4}

N = 1500

p(x) 100 × 100 N = 1000

p(x)

K = 4 N = {1500, 3000}

p(x)

100 × 100 N = 1000

p(x)

K = 4 N = 1500

= {3, 7}

p(x) 100 × 100 N = 1000

p(x)

x z

http://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf
https://arxiv.org/pdf/1806.07366.pdf
https://arxiv.org/abs/1605.08803
http://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf
https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial11/NF_image_modeling.html#Normalizing-Flows-as-generative-model
https://www.in.tum.de/en/daml/teaching/summer-term-2020/machine-learning-for-graphs-and-sequential-data/

Statistical Methods in Image Processing EE-048954

Homework 2: Langevin Dynamics and Energy-Based Models

Due Date: May 31, 2022

Submission Guidelines
Submission only in pairs on the course website (Moodle).
Working environment:

We encourage you to work in Jupyter Notebook online using Google Colab as it does not require any
installation.

You should submit two separated files:
A .ipynb file, with the name: ee048954_hw2_id1_id2.ipynb which contains your code implementations.
A .pdf file, with the name: ee048954_hw2_id1_id2.pdf which is your report containing plots, answers, and
discussions.
No handwritten submissions and no other file-types (.docx , .html , ...) will be accepted.

Mounting your drive for saving/loading stuff

Importing relevant libraries for Part I

Part I: Toy 2D Dataset (10 points)
In this homework we will look into stochastic sampling techniques that could be used to sample from energy-based
models of images. But, to kick things off, we will first start with the simple toy 2D dataset comprised of 5 rotated and
equally-spaced Gaussian Mixture distribution we are familiar with from HW1 with slight adjustments:

In []: from google.colab import drive
drive.mount('/content/drive')

In []: ## Standard libraries
import os
import math
import time
import numpy as np
import random
import copy

Scikit-learn built-in dataset generator
from sklearn.datasets import make_blobs

Progress bar
import tqdm

Imports for plotting
import matplotlib.pyplot as plt
import matplotlib.animation as animation
%matplotlib inline
import matplotlib
matplotlib.rcParams['lines.linewidth'] = 2.0
plt.style.use('ggplot')

https://colab.research.google.com/

More formally, the probability density distribution considered is given by:

with , ,

and .

Task 1. Write down the analytical gradient of with respect to . i.e. .

While this distribution can be sampeld trivially using standard techniques, here we will sample from it using Langevin
Dynamics.

Task 2. Implement Langevin Dynamics for sampling from :

Initialize 1000 random 2D points i.i.d distributed according to .

Update the points according to the Langevin Dynamics update step:

Use and .

Repeat the previous step for iterations.

Task 3. Draw samples from using the provided code lines below and compare them visually to
the samples drawn using Langevin Dynamics. Present both sample types and discuss the results.

Task 4. Repeat Tasks 2 and 3, this time with . Compare the results to Task 3, and explain the

effect of on the resulting samples. Tip: To have a clear visual examination of the phenomenon, plot the path a sampled
point goes through throughout the dynamics for different values of .

Importing additional relevant libraries for Parts II-IV

p(x; σ, {μi}) =
M

∑
m=1

exp{− ||x − μi||
2},

1

M

1

2πσ2

1

2σ2

M = 5 σ2 = 0.1

{μm} = 0.7 ⋅ {(1, 0)T , (cos(), sin())T , (cos(), sin())T , (cos(), sin())T , (cos(), sin())T }2π

5
2π

5
4π

5
4π

5
6π

5
6π

5
8π

5
8π

5

log p(x) x ∇x log p(x)

p(x)

x U [−3.0, 3.0]

xk+1 = xk + ε∇ log p(xk) + √2εN k.

√2ε = 10
256

N ∼ N (0, I)

K = 5000

N = 1000 xi p(x)

In []: num_samples, seed, = 1000 , 0
np.random.seed(seed)
angles = np.linspace(0, 2 * np.pi, 5, endpoint=False)
centers = np.stack([0.7 * np.array([np.cos(angle), np.sin(angle)]) for angle in angles])
real_samples = make_blobs(num_samples, centers=centers, cluster_std=np.sqrt(.1), random_state=seed, shuffl

√2ε = { , }1
256

200
256

ε

ε

In []: ## Useful for creating GIFs
import imageio

Part II: Langevin Dynamics (30 points)
General Introduction
In the remainder of this exercise we will focus on sampling from an Energy Based Model (EBM) that was trained to fit the
distribution of the MNIST digits dataset (no need to download the dataset). The EBM is given in the form of a
Convolutional Neural Network (CNN), and defined by

Specifically, the model gets an image and returns , where are the trained model parameters. We will use this
model in order to sample new digits from the MNIST distribution. In order to do so, we will use MCMC with Langevin
Dynamics.

Model Architecture
The provided class below ResNet implements the neural network approximating with a parametric function

, and is based on the architecture from the paper wide residual networks. Note that for our purposes in this
exercise you don't need to understand this class thoroughly. You can treat this network as a black-box that accepts an
image as input and returns as output, and can also provide us with the gradient of with respect
to its input using automatic differentiation, i.e. .

PyTorch
import torch
import torchvision

Function for setting the seed
def set_seed(seed):
 random.seed(seed)
 np.random.seed(seed)
 torch.manual_seed(seed)
 if torch.cuda.is_available():
 torch.cuda.manual_seed(seed)
 torch.cuda.manual_seed_all(seed)
set_seed(42)

Ensure that all operations are deterministic on GPU (if used) for reproducibility
torch.backends.cudnn.determinstic = True
torch.backends.cudnn.benchmark = False

device to be used for Parts II-IV is preferably a GPU
try to change the runtime type to GPU if you can in Google Colab
device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
print("Using device", device)

p(x)

pθ(x) = e−Eθ(x).
1

Z(θ)

x Eθ(x) θ

E(x)

Eθ(x)

x Eθ(x) ≈ E(x) E(x)

∇xE(x)

In []: # the next lines define the architecture of the model and its functionality in forward path
(e.g how it operates when inputting an image)
class ResNet(torch.nn.Module):
 def __init__(self, n_channels):
 super().__init__()

 levels_params = [
 {'n_channels': 16, 'n_blocks': 2, 'downsample': False},
 {'n_channels': 32, 'n_blocks': 2, 'downsample': True},
 {'n_channels': 64, 'n_blocks': 2, 'downsample': True},
 {'n_channels': 64, 'n_blocks': 2, 'downsample': True},
]

 self._el = torch.nn.ModuleDict()

 self._el['in_conv'] = torch.nn.Conv2d(n_channels, 16, kernel_size=3, padding=3)
 n_channels = 16

http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1605.07146

For your convinience, we provide pre-trained model weights on the MNIST dataset, Courtesy of Mr. Omer Yair. To
instantiate the model and load the pretrained weights from the attached file checkpoint.pt , you can use the
following:

 levels = torch.nn.ModuleList()
 for level_params in levels_params:
 level = torch.nn.ModuleDict()
 res_blocks = torch.nn.ModuleList()

 ## The first residual block in the level
 res_block = torch.nn.ModuleDict()
 n_channels_out = level_params['n_channels']
 if level_params['downsample']:
 res_block['shortcut_conv'] = torch.nn.Conv2d(n_channels, n_channels_out, kernel_size=2, st
 else:
 res_block['shortcut_conv'] = torch.nn.Conv2d(n_channels, n_channels_out, kernel_size=1)
 res_block['conv_1'] = torch.nn.Conv2d(n_channels, n_channels_out, kernel_size=3, padding=1)
 n_channels = n_channels_out
 if level_params['downsample']:
 res_block['conv_2'] = torch.nn.Conv2d(n_channels, n_channels, kernel_size=4, stride=2, pad
 else:
 res_block['conv_2'] = torch.nn.Conv2d(n_channels, n_channels, kernel_size=3, stride=1, pad
 res_blocks.append(res_block)

 ## The rest of the residual blocks in the level
 for _ in range(level_params['n_blocks'] - 1):
 res_block = torch.nn.ModuleDict()
 res_block['conv_1'] = torch.nn.Conv2d(n_channels, n_channels, kernel_size=3, padding=1)
 res_block['conv_2'] = torch.nn.Conv2d(n_channels, n_channels, kernel_size=3, padding=1)
 res_blocks.append(res_block)
 level['res_blocks'] = res_blocks
 levels.append(level)
 self._el['levels'] = levels

 self._el['out_fc'] = torch.nn.Linear(n_channels, 1, bias=False)

 for module in self.modules():
 if isinstance(module, torch.nn.Conv2d):
 torch.nn.init.xavier_uniform_(module.weight, gain=2 ** 0.5)
 if module.bias is not None:
 module.bias.data.zero_()

 # functionality when inputting image x to the model:
 def forward(self, x):
 x = self._el['in_conv'](x)

 for level in self._el['levels']:
 for res_block in level['res_blocks']:
 shortcut = x
 x = torch.nn.functional.leaky_relu(x, 0.2)
 x = res_block['conv_1'](x)
 x = torch.nn.functional.leaky_relu(x, 0.2)
 x = res_block['conv_2'](x)
 if 'shortcut_conv' in res_block:
 shortcut = res_block['shortcut_conv'](shortcut)
 x = x + shortcut

 x = torch.nn.functional.leaky_relu(x, 0.2)
 x = x.view(x.shape[0], x.shape[1], -1).sum(dim=2)
 x = self._el['out_fc'](x)

 return x[:, 0]

θ⋆

θ⋆

In []: # instantiate the class above for images with 1 channel and load it to the device (CPU/GPU)
ebm = ResNet(n_channels=1).to(device)

transfer the model to evaluation mode (as we don't want to train it, just to use it)
ebm.eval()

After loading the trained weights , we can feed the model with images and get their approximated energy by
a simple forward pass:

To calculate the gradient of the model output with respect to the input images , we can use automatic
differentiation because we previously set the requires_grad_ property of the input images to True :

Task 5. Run Langevin Dynamics for the provided EBM:

Initialize 30 random images of size distributed i.i.d according to .

Update the images according to the Langevin Dynamics update step:

Use and . Note that although we do not have an explicit expression for , but only for
, we are still able to perform the update step, how? For calculating the gradient you can use automatic

differentiation as described above.

Repeat the previous step for iterations. Present the final samples and discuss the results.

Task 6. Repeat the previous task for iterations, this time with . Present the final samples and
discuss the results comparing to the previous section.

Part III: MALA (30 points)
We will now expand Part II into the Metropolis-Adjusted Langevin Algorithm (MALA):

Use the same initialization scheme as in Langevin Dynamics
use the same update step as before

with and .
Acceptance step: accept the sample according to the acceptance rule:

If is more probable than then accept
else, replace with with probability , where

load the trained model weights/parameters from the checkpoint file
checkpoint_path = 'checkpoint.pt'
ebm.load_state_dict(torch.load(checkpoint_path, map_location=device))

θ⋆ x Eθ⋆(x)

In []: # number of images to generate
n_imgs = 30

randomly initialized 28x28x1 images with i.i.d pixels ~U[0,1]
imgs = torch.rand((n_imgs, 1, 28, 28), device=device)

set the images to have a gradient graph so we could calculate the gradient of the model
imgs.requires_grad_(True)

run the model: input the images x, getting as output their estimated energy E(x)
energy = ebm(imgs)

E(x) x

In []: # calculates the gradient of the model: grad(E(x)) with respect to x.
grad = torch.autograd.grad(energy.sum(), imgs)[0]

28 × 28 U [0, 1]

xk+1 = xk + ε∇ log p(xk) + √2εN k.

√2ε = 2
256

N ∼ N (0, I) p(x)

E(x)

K = 2000

K = 2000 √2ε = 3
256

xk+1 = xk + ε∇ log p(xk) + √2εN k,

√2ε = 2
256

N ∼ N (0, I)

xk+1

xk+1 xk xk+1

xk+1 xk α

α ≜
p(xk+1)q(xk ∣ xk+1)

p(xk)q(xk+1 ∣ xk)

and

Task 7. In the acceptance step of the MALA algorithm we can use without explicitly knowing . Why?

Task 8. Apply the MALA algorithm for iterations. Present the final samples and discuss the results.

Task 9. Apply the MALA algorithm for iterations, with . Present the final samples and discuss

the results.

Task 10. Apply the MALA algorithm for iterations (it might take a few minutes), with .
Instead of random initialization, run Langevin dynamics as in Part II with for iterations and use
these images as your initialization for the MALA algorithm. Present the final samples and examples for samples in
intermediate iterations. Discuss the results.

Part IV: Perceptual and MMSE Denoising (30 points)
Given a noisy image , where is a clean image and , we would like to estimate using
Langevin Dynamics and the EBM model trained to estimate . We will perform denoising by drawing samples from

.

Task 11. Write an explicit expression for in terms of and .

Task 12. How should the update step in Langevin Dynamics (Part II) be changed in order to draw samples from
 instead of ? We call such samples perceptual denoising results.

Task 13. The attachment of this exercise includes 30 noisy digits with (you can load the images

using the command torch.load()). Perform perceptual denoising with Langevin Dynamics with the parameters
 and . Present and discuss the results.

Task 14. Minimum MSE denoising can be obtained by averaging over the perceptual denoising results, since the
conditional expectation can be approximated by averaging over samples from (namely,

, where are samples from). Present the MMSE results averages over 10 perceptual

samples. Why do you think the task of perceptual denoising is called that way?

q(x′ ∣ x) ∝ exp(− ∥x′ − x − ε∇ log p(x)∥2
2).

1

4ε

E(x) p(x)

K = 2000

K = 2000 √2ε = 3
256

K = 20, 000 √2ε = 3
256

√2ε = 2
256

K = 500

y = x + n x n ∼ N (0, σ2I) x

p(x)

p(x|y)

∇x log p(x|y) px(x) pn(n)

p(x|y) p(x)

σ = { , }50
256

100
256

K = 2000 √2ε = 2
256

E[x|y] p(x|y)

E[x|y] ≈ ∑N
n=1 xn

1

N
{xn} p(x|y)

Statistical Methods in Image Processing EE-
048954

Homework 3: Contrastive Divergence and Noise
Contrastive Estimation

Due Date: June 16, 2022

Submission Guidelines
Submission only in pairs on the course website (Moodle).
Working environment:

We encourage you to work in Jupyter Notebook online using Google Colab as it does
not require any installation.

You should submit two separated files:
A .ipynb file, with the name: ee048954_hw3_id1_id2.ipynb which contains your
code implementations.
A .pdf file, with the name: ee048954_hw3_id1_id2.pdf which is your report
containing plots, answers, and discussions.
No handwritten submissions and no other file-types (.docx , .html , ...) will be
accepted.

Mounting your drive for saving/loading stuff

Importing relevant libraries

In []: from google.colab import drive
drive.mount('/content/drive')

In [6]: ## Standard libraries
import os
import math
import time
import numpy as np
import random
import copy

Scipy optimization routines
from scipy.optimize import minimize

Progress bar
import tqdm

Imports for plotting
import matplotlib.pyplot as plt
import matplotlib.animation as animation
%matplotlib inline

https://colab.research.google.com/

Part I: Contrastive Divergence (50 points)
Consider the following Gaussian Mixture Model (GMM) distribution

where . We will use , , and .

Sampling from GMM

Task 1. Direct sampling: Use your function from HW1 that accepts , and returns a sample
 from . Draw samples from the distribution using this

function. These will be our real samples.

Task 2. Sampling with MCMC: implement the MALA algorithm to draw samples from
. The function will get an initial guess and will generate chains of length . Use
 and .

From now on, we will refer to as unknowns and we will estimate them using different
algorithms.

Estimation of

Task 3. Implement Maximum likelihood (ML) estimation of using direct sampling:

Step 1: Randomly initialize from .
Step 2: Use your function from Task 1 to draw 100 samples from using .
Step 3: Update using the ML gradient descent step:

where denotes averaging over the real samples from Section A and denotes averaging
over the synthetically generated samples from Step 2. Use .
Repeat Step 2 and Step 3 until convergence.

Task 4. Implement Maximum likelihood (ML) estimation of using MCMC:

Step 1: Randomly initialize from .
Step 2: Use your function from Task 2 to draw 100 samples from using .
Initialize the chains with and use chains length of .
Step 3: Update using the ML gradient descent step:

import matplotlib
matplotlib.rcParams['lines.linewidth'] = 2.0
plt.style.use('ggplot')

p(x; {μi}) =
N

∑
i=1

exp{− ||x − μi||
2},

1

N

1

2π

1

2

x, μi ∈ R
2 N = 4 σ = 1 {μi} = {(0, 0)T , (0, 3)T , (3, 0)T , (3, 3)T }

{μi}

x p(x; {μi}) J = 1000 {x} p(x; {μi})

p(x; {μi}) {x̂i} L

√2ε = 0.1 N ∼ N (0, I)

{μi}

{μi}

{μi}

{~μi} U([0, 3]2)
~x p(x; {μi}) {~μi}

{~μi}

~μk+1
i = ~μk

i + η (⟨∇μi
log p(x; {μi})⟩x − ⟨∇μi

log p(x; {μi})⟩~x) ,

⟨⋅⟩x ⟨⋅⟩~x

η = 1

{μi}

{~μi} U([0, 3]2)
~x p(x; {μi}) {~μi}

x̂i ∼ N (1.5, 2) L = 1000

{~μi}

where denotes averaging over the real samples from Section A and denotes averaging
over the synthetically generated samples from Step 2. Use .
Repeat Step 2 and Step 3 until convergence.

Task 5. Implement Contrastive Divergence (CD) estimation of using MCMC sampling:

Step 1: Randomly initialize from .
Step 2: Use your function from Task 2 to draw 100 samples from using .
Initialize the chains with 100 samples randomly chosen from the real set of examples from
Task 1, and use only update steps.
Step 3: Update using the CD gradient descent step:

where denotes averaging over the real samples used for initialization of the chains in
Step 2 and denotes averaging over the MCMC generated samples from Step 3. Use .
Repeat Step 2 and Step 3 until convergence.

Task 6. Present the estimated and the final random samples generated with each of
the three algorithms in Tasks 3-5. Discuss the differences in convergence.

Part II: Noise Contrastive Estimation (50 points)
Consider the distribution

where is a normalization constant, and .

Sampling from GMM

Task 7. What is the value of ?

Task 8. Use , , and . Draw
samples from the distribution using the function from Task 1.

From now on, we will refer to as unknowns and we will estimate them using the Noise
Contrastive Estimation method.

Estimation of

Task 9. Implement Noise Contrastive Estimation of :

~μk+1
i = ~μk

i + η (⟨∇μi
log p(x; {μi})⟩x − ⟨∇μi

log p(x; {μi})⟩~x) ,

⟨⋅⟩x ⟨⋅⟩~x

η = 1

{μi}

{~μi} U([0, 3]2)
~x p(x; {μi}) {~μi}

L = 10

{~μi}

~μk+1
i = ~μk

i + η (⟨∇μi
log p(x; {μi})⟩x − ⟨∇μi

log p(x; {μi})⟩~x) ,

⟨⋅⟩x 100

⟨⋅⟩~x η = 1

{μi} {~xi}

pm(x; {μi}) =
N

∑
i=1

exp{− ||x − μi||
2},

1

Z

1

2σ2

Z ∈ R x, μi ∈ R
2

Z

N = 4 σ = 1 {μi} = {(0, 0)T , (0, 3)T , (3, 0)T , (3, 3)T } J = 1000

{xj} pm(x; {μi})

{μi}

{μi}

{μi}

Step 1: Generating the artificial data-set of noise: Draw samples from

using and .
Step 2: Randomly select an initial guess for the model means from .
Step 3: Update by maximizing:

where

Implementation Tip: This step can be executed using the function
scipy.optimize.minimize which finds the minimum of an (unconstrained) optimization

problem (e.g. using the 'BFGS' method), given a function that calculates the objective and an
initial guess (see scipy documentation for more details). In our case, for maximization,
implement a function that calculates the minus of the objective above.

We will now regard both and the normalization constant as unknowns, and will estimate
them using Noise Contrastive Estimation.

Task 10. Implement Noise Contrastive Estimation with an un-normalized probability model:

Step 1: Generating the artificial data-set of noise: Draw samples from

using and .
Step 2: Randomly select an initial guess for the model means from , and for the
normalization constant from
Step 3: Update and by maximizing:

where

Evaluating the Results

Task 11. Visually: plot the estimates of of Tasks 9 and 10 (two separate figures). Include

J = 1000 {yj}

pn(y; μn) = exp{− ||y − μn||2}1

2πσ2
n

1

2σ2
n

μn = (1, 1)T σn = 2

{~μi} U([0, 3]2)

{~μi}

{~μi} = arg max
{μi}

J

∑
j=1

[ln(h(xj; {μi})) + ln(1 − h(yj; {μi}))] ,

h(u; {μi}) = .
pm(u; {μi})

pm(u; {μi}) + pn(u; μn)

{μi} Z

J = 1000 {yj}

pn(y; μn) = exp{− ||y − μn||2}1

2πσ2
n

1

2σ2
n

μn = (1, 1)T σn = 2

{~μi} U([0, 3]2)

Z U([0.1, 1])

{~μi} Z

{~μi}, Z = arg max
{μi},Z

J

∑
j=1

[ln(h(xj; {μi}, Z)) + ln(1 − h(yj; {μi}, Z))] ,

h(u; {μi}, Z) = .
pm(u; {μi}, Z)

pm(u; {μi}, Z) + pn(u; μn)

{μi}

the model samples, the noise samples, the initial guess for the model means, and the final estimates
of .

Task 12. Quantitatively: repeat Tasks 9 and 10, this time with .
For each value of repeat the estimation process for 50 times, each time with different realizations
for and and initial guesses for the estimands (in Task 9 and in Task 10.

For each value of , calculate the MSE between the true parameter values and their estimates (the
mean will be taken over the different realizations). Note that for the model means, the MSE should
be calculated to the closest true for each estimation. If at the same run two estimated s pick
the same true , then this run should be declared as a failure and should be disregarded. Report
the number of failure runs.

Task 13. Discussion: How does the number of samples affect the accuracy of the estimation?
How does the addition of as an unknown affect the accuracy?

{~μi}

J = 100 × [1, 5, 10, 20, 30, 50]

J

{xj} {yj} {μi} {μi}, Z

J

μi μi

μi

J

Z

Statistical Methods in Image Processing EE-048954

Homework 4: Score-Based Generative Modelling

Due Date: July 01, 2022

Submission Guidelines
Submission only in pairs on the course website (Moodle).
Working environment:

We encourage you to work in Jupyter Notebook online using Google Colab as it does not require any
installation.

You should submit two separated files:
A .ipynb file, with the name: ee048954_hw4_id1_id2.ipynb which contains your code implementations.
A .pdf file, with the name: ee048954_hw4_id1_id2.pdf which is your report containing plots, answers, and
discussions.
No handwritten submissions and no other file-types (.docx , .html , ...) will be accepted.

Mounting your drive for saving/loading stuff

Importing relevant libraries

Introduction
Given a probablity density function , we define the score as As you might guess, score-based
generative models are trained to estimate .

In []: from google.colab import drive
drive.mount('/content/drive')

In []: ## Standard libraries
import numpy as np
import random

KDE estimation
from sklearn.neighbors import KernelDensity

Progress bar
import tqdm.notebook as tqdm

Imports for plotting
import matplotlib.pyplot as plt
import matplotlib.animation as animation
%matplotlib inline
import matplotlib
matplotlib.rcParams['lines.linewidth'] = 2.0
plt.style.use('ggplot')

Pytorch
import torch
import torch.nn as nn
import torch.optim as optim
import torch.autograd as autograd

device to be used (preferably a GPU, change Colab runtime type if needed)
device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
print("Using device", device)

p(x) ∇x log p(x).

∇x log p(x)

https://colab.research.google.com/

Unlike likelihood-based models such as normalizing flows from HW1, score-based models do not have to be normalized
and are easier to parameterize. For example, recall the non-normalized statistical model from HW2 and HW3

, where is called the energy function and is an unknown normalizing constant that makes

 a proper probability density function. We saw that can be parameterized by a flexible neural network, and
computing the score didn't require computing the normalizing constant . Similarly, in
Score Matching, any neural network that maps an input vector to an output vector can be used as a
score-based model, as long as the output and input have the same dimensionality. This yields huge flexibility in choosing
model architectures.

Recently, variants of these models (a.k.a. Diffusion Models) have obtained high-quality samples comparable to/better
than GANs (e.g. this paper) without requiring adversarial training, and are considered to be the current state-of-the-art.
For the sake of simplicity, as usual, we will work with a toy example to enhance our understanding of the problems that
arise when trying to learn and sample scores .

Part I: Annealed Langevin Dynamics (40 points)
Consider the following Gaussian Mixture Model (GMM) distribution

where , with , , and is the identity matrix. For your
convenience, we provide below the class GMMDist .

Task 1. How can we sample from considering ? Implement the missing method
sample that accepts the number of samples n and the standard deviation sigma and returns a tensor of

samples . Plot i.i.d. samples from .

Task 2. Write down the analytical expression for and implement the missing method
log_prob . The method accepts as input two arguments: samples - the points at which we wish to evaluate the

expression, sigma - the standard deviation, and returns an tensor logp (scalar per sample). Using this method,
plot at a 2D grid of points in the domain .

pθ(x) = e−Eθ(x)

Zθ
Eθ(x) ∈ R Zθ

pθ(x) Eθ(x)

∇x log pθ(x) = −∇xEθ(x) Zθ

x ∈ R
d y ∈ R

d

∇x log p(x)

p(x; {μ1,μ2,π,σ2}) = πN (x;μ1,σ2I) + (1 − π)N (x;μ2,σ2I) ,

π = 1
5

x,μ1,μ2 ∈ R
2 μ1 = (−5, −5)T ,μ2 = (5, 5)T σ2 = 1 I ∈ R

2×2

In []: class GMMDist(object):
 def __init__(self):
 self.mix_probs = torch.tensor([0.2, 0.8])
 self.means = torch.stack([-torch.ones(2)*5, torch.ones(2)*5], dim=0)
 self.sigma = 1.

 def sample(self, n, sigma=1):
 """
 TODO: replace samples with your code
 """
 samples = None
 return samples

 def log_prob(self, samples, sigma=1):
 """
 TODO: replace logp with your code
 """
 logp = None
 return logp

 def score(self, samples, sigma=1):
 """
 TODO: replace grad_logp with your code
 """
 grad_logp = None
 return grad_logp

p(x; {μ1,μ2,π,σ2}) π = 0.2

n × 2

{xi} J = 1000 {xi} p(x; {μ1,μ2,π,σ2})

log p(x; {μ1,μ2,π,σ2})

n × 1

p(x; {μ1,μ2,π,σ2}) 100 × 100 [−8, 8] × [−8, 8]

https://arxiv.org/abs/2105.05233

Task 3. Write down the analytical expression for and implement the missing method
score . The method accepts as input two arguments: samples - the points at which we wish to evaluate the

expression, sigma - the standard deviation, and returns an tensor grad_logp (2D vector per sample). Using this
method, plot the vector field at a 2D grid of points in the domain
using a quiver plot.

Next, we would like to sample from assuming we only have access to the scores
.

Task 4. Implement a function that samples using Langevin dynamics:

with . This function accepts four inputs:

score - a function that accepts an tensor of samples and a standard deviation sigma and returns an
 tensor of scores .

init - tensor of initial positions initialized uniformly in (i.e.).
epsilon - the step size of the Langevin update.
T - the number of Langevin steps.

Show the resulting samples for . Discuss the results in terms of the relative mode weight.
Do you notice anything strange? What is the reason for this behavior?

Let be a positive geometric sequence that satisfies . The Annealed Langevin dynamics
algorithm, proposes to sample from using successive applications of Langevin dynamics with a twist: In the
application of Langevin dynamics for steps, we initialize the samples with the output of the run, update the

step size according to , and use the scores of a noisy version of our original samples with a probability

density of . The sequence is chosen such that is large enough to mitigate the
difficulties encountered in Task 4, and is small enough to minimize the effect on the data. Note that for our Toy
dataset adding Gaussian noise with will result in the same GMM distribution with a different effective standard

deviation of . Therefore, for simplicity of implementation, we will consider the effective standard

deviations directly and implement the scores of the distribution using the class method
GMMDist.score() . In our implementation, we will use a sequence of effective standard deviations

spaced linearly in log-space between and . Meaning, the resulting sequence can be
implemented using np.linspace() like so: sigmas=np.exp(np.linspace(np.log(20.),np.log(1.),10)) .

Task 5. Implement a function that samples using Annealed Langevin dynamics summarized as
follows:

Initialize with .
For :

Update the step size:

For :
Draw

Update initialization

This function accepts five inputs:

score - a function that accepts an tensor of samples and a standard deviation sigma and returns an
 tensor of scores .

∇x log p(x; {μ1,μ2,π,σ2})

n × 2

∇x log p(x; {μ1,μ2,π,σ2}) 20 × 20 [−8, 8] × [−8, 8]

p(x; {μ1,μ2,π,σ2})

∇x log p(x; {μ1,μ2,π,σ2})

p(x; {μ1,μ2,π,σ2})

xk+1 = xk + ϵ∇x log p(xk) + √2ϵzk,

zk ∼ N (0, I)

n × 2

n × 2

n × 2 [−8, 8] × [−8, 8] ui ∼ U[−8, 8]2

n = 1280, ϵ = 0.05,T = 1000

{σi}Li=1 = ⋯ = > 1
σ1

σ2

σL−1

σL

p(x) L ith

T (i − 1)th

ϵi = ϵ
σ2
i

σ2
L

{~x}

qσi(
~x) ≜ ∫ p(x)N (~x|x,σ2

i I)dx {σi}Li=1 σ1

σL

σi

~σi = √σ2 + σ2
i

{~σ}Li=1 qσi(
~x)

L = 10 {~σ}Li=1
~σ1 = 20 ~σL = 1 {~σi}Li=1

p(x; {μ1,μ2,π,σ2})

x0 ∼ U[−8, 8]2

i = 1, 2, … ,L

ϵi = ϵ
~σ2
i

~σ2
L

t = 1, 2, … ,T

zt ∼ N (0, I)

xt = xt−1 + ϵ∇x log p(xt−1; ~σ2
i) + √2ϵzt

x0 = xT

n × 2

n × 2

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.quiver.html

init - tensor of initial positions initialized uniformly in (i.e.).
sigmas - tensor of effective standard deviations in a decreasing order (i.e. sigmas[0] is).
epsilon - the step size of the Langevin update.
T - the number of Langevin steps.

Show the resulting samples for . Discuss the results in terms of the relative mode weight
compared to Task 4. Plot the resulting samples for each annealing step (you're encouraged to create an
animation), and explain the effect of using multiple standard deviations.

Task 6. To enforce your conclusions from Task 5, plot the estimated probability density function from Tasks 4 and 5
at a 2D grid of points in the domain and compare them to the result in Task 2. Your
comparison should be performed both visually in 2D and along the line in 1D. To approximate the estimated
density in Tasks 4 and 5, apply kernel density estimation to the respective samples using the function
sklearn.neighbors.KernelDensity() with bandwidth=0.5 .

Part II: Score Matching (60 points)
So far, we assumed we have access to the underlying ground truth scores. However, in reality we only have access to

 samples from which we need to learn these scores. To learn the scores, we would like to minimize the
Fisher Divergence between the score model and the true data scores :

However, we don't know the ground truth scores , and therefore we can't compute the Fisher Divergence
directly. Luckily, this objective can be shown equivalent to the following up to a constant:

where is the trace of the Jacobian of . In deep networks calculating the trace of the Jacobian is very
expensive computationally, and therefore there are two popular methods to circumvent its calculation. In class we saw
one method for avoiding the costly Jacobian computation, called Denoising Score Matching (DSM). DSM is a variant of
score matching that completely circumvents . It first perturbs the data point with a pre-specified noise
distribution and then employs score matching to estimate the score of the perturbed data distribution

. The DSM objective was proved equivalent to the following:

where the optimal minimizer satisfies , which is roughly true when the noise is
small enough such that .

Here we will see a different method, called Sliced Score Matching (SSM). SSM uses random projections to approximate
. The objective is given by:

where is a simple distribution of random vectors, e.g. the multivariate standard normal. Note that the term
 can be efficiently computed by forward mode auto-differentiation. Meaning, assuming we have a random

vector v , and a score model score that accepts x as input and outputs the score s_x as output, we can compute
the term using:

x.requires_grad_(True)
s_x = score(x)
grad_sx_v = autograd.grad(torch.sum(s_x*v), x, create_graph=True)[0]

n × 2 [−8, 8] × [−8, 8] ui ∼ U[−8, 8]2

L × 1 ~σ1

n = 1280, ϵ = 0.05,T = 100

i = 1, … ,L

100 × 100 [−8, 8] × [−8, 8]

x = y

p̂ (x)

i. i. d. xi ∼ p (x)

sθ (x) ∇x log p (x)

Ep(x) [∥sθ (x) − ∇x log p (x) ∥2
2]

1

2

∇x log p (x)

Ep(x) [tr (∇xsθ (x)) + ∥sθ (x) ∥2
2]

1

2

tr (∇xsθ (x)) sθ (x)

tr (∇xsθ (x)) x

qσ (~x|x)

qσ(~x) ≜ ∫ p(x)N (~x|x,σ2I)dx

Eqσ(~x|x)p(x) [∥sθ (~x) − ∇~x log qσ (~x|x) ∥2
2] ,

sθ⋆ (~x) = ∇~x log qσ (~x) ≈ ∇x log p (x)

qσ (~x) ≈ p (x)

tr (∇xsθ (x))

Ep(x) [Ep(v) [vT∇xsθ (x) v + ∥sθ (x) ∥2
2]]

1

2

pv

vT∇xsθ (x) v

∇xsθ (x) v

Task 7. Implement a function that calculates the sliced score matching objective. Your function should accept three
inputs:

score_net - the score model that accepts samples and estimate the scores.
samples - the current batch of training samples .
nv - the number of random vectors to approximate using samples.

Tip: to enable forward mode auto-differentiation of the score model score_net w.r.t. the input samples samples , you
need to set their .requires_grad_() property to True .

Now that we have an objective quantifying how good we can estimate the underlying scores, we can train a neural
network. For the purpose of this exercise we will use a simple 3-layer fully connected network with the smooth "Softplus"
activation function:

Task 8. Train a score model using the following training function with the default arguments:

This function internally uses the class method GMMDist.sample from Task 1 as an infinite data sampler, and calculates
the sliced score matching objective using the implemented function from Task 7. After training is done, the function
outputs the loss progression during training losses and the optimized score model score_net . Plot the resulting
loss curve for the first 1000 steps for sanity check. After training is done, use the resulting score model score_net to

B × 2 xi

Ep(v)

In []: def sliced_score_matching(score_net, samples, nv=1):
 """
 TODO: replace loss with your code
 """
 loss = None
 return loss

In []: score_net = nn.Sequential(nn.Linear(2, 128),
 nn.Softplus(),
 nn.Linear(128, 128),
 nn.Softplus(),
 nn.Linear(128, 2))

In []: # training function: model, optimizer and loss
def train(score_net, batch_size=128, nsteps=10000, lr=0.001):

 # initialize the sampler, the optimizer and the loss list
 teacher = GMMDist()
 optimizer = optim.Adam(score_net.parameters(), lr=lr)
 losses = []

 # train until stagnation (can't overfit due to infinite data)
 tqdm_steps = tqdm.trange(nsteps)
 for step in tqdm_steps:

 # sample x_i~p(x) and calculate the slice-score-matching objective
 samples = teacher.sample(batch_size)
 loss = sliced_score_matching(score_net, samples, nv=1)

 # backprop to update the score model
 optimizer.zero_grad()
 loss.backward()
 optimizer.step()

 # print and save current loss
 losses.append(loss.detach().item())
 if step % 50 == 0:
 tqdm_steps.set_description('step: {}, loss: {:.5f}'.format(step, loss.item()))

 return losses, score_net

estimate the scores at a 2D grid of points in the domain . Plot the estimated scores as a vector
field using a quiver plot, and compare the result to the real data scores from Task 3. Are the estimated scores uniformly
accurate across the considered domain? If not, point out the most accurate areas, and explain the result.

Task 9. Now that we have a trained model estimating the score, we can sample data samples from using
Langevin dynamics as we did in Task 4. Repeat Task 4 with the estimated score model from Task 8, and plot the resulting
samples. Compare the samples obtained using the estimated vs the real scores. In addition, compare the estimated
probability distribution at a 2D grid of points in the domain with the result of Task 2.
To estimate of the score model use kernel density estimation implemented with
sklearn.neighbors.KernelDensity() with bandwidth=0.5 on the samples from Langevin dynamics. Discuss the

results.

As we saw earlier in Task 5, even with the perfect scores Langevin dynamics can have practical pitfalls when sampling our
Toy distribution. One solution in such cases is using annealing with multiple standard deviations to improve the
results. However, that requires us to know the scores of all distributions . While in
theory we can learn separate score models to approximate the desired sequence of scores , in practice
this is too heavy and computationally inefficient. Therefore, To alleviate this issue, we can learn a single score model that
is conditioned on the standard deviation of the added noise to our samples, i.e. . As noted in this paper, a

simple reparameterization of the conditional score model into could suffice in practice. However, we still

need to train this model with noisy versions of our dataset , where the samples in the dataset are simulated
according to . This can be achieved by replacing our sliced score matching objective from Task 7
with an annealed version like so:

where is a coefficient function depending on , and

 is the sliced score matching objective from Task 7. Specifically,

in our implementation we will use which was shown to be a good choice to make the values of
 for all roughly of the same order.

Task 10. Implement the Annealed version of the sliced score matching objective. Your function should accept four
inputs:

cond_score_net - the conditional score model that accepts samples and used_sigmas , and estimate the
scores .
perturbed_samples - the current batch of perturbed training samples .
used_sigmas - vector indicating the used standard deviation sigma corresponding to each sample in the

batch.
nv - the number of random vectors to approximate using samples.

Now that we have an annealed version of our sliced score matching objective, we can train a noise-conditional score
model to estimate the desired sequence of scores . For the purpose of this excercise, we will use the
following simple conditional score model (both taking as input and normalizing the output):

20 × 20 [−8, 8] × [−8, 8]

p(x)

p̂ (x) 100 × 100 [−8, 8] × [−8, 8]

p̂ (x)

{σi}Li=1

L qσi(
~x) = ∫ p(x)N (~x|x,σ2

i I)dx

L ∇~x log qσi(
~x)

σ2
i sθ (x,σ2

i)

sθ (x,σ2
i)

sθ(x)

σi

L {~xj}i ith

~xj ∼ N (~xj; xj,σ
2
i)

L (θ; {σi}Li=1) =
L

∑
i=1

λ (σi) ℓ (θ;σi),
1

L

λ (σi) > 0 σi

ℓ (θ;σi) = Ep(x) [Ep(v) [vT∇xsθ (x) v + ∥sθ (x) ∥2
2]]

1
2

λ (σ) = σ2

λ (σi) ℓ (θ;σi) {σi}Li=1

B × 2 ~xi

B × 1

Ep(v)

In []: def annealed_sliced_score_matching(cond_score_net, perturbed_samples, used_sigmas, nv=1):
 """
 TODO: replace loss with your code
 """
 loss = None
 return loss

{∇~x log qσi(
~x)}Li=1

σi

In []: # simple conditional score model
class CondScoreNet(nn.Module):

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.quiver.html
https://arxiv.org/abs/2006.09011

Task 11. Train a noise-conditional score model using the following training function with the default arguments:

Use sigmas=np.exp(np.linspace(np.log(10.),np.log(.1),10)) for the sequence of standard deviations
. After training is done, the function outputs the loss progression during training losses and the optimized

noise-conditional score model cond_score_net . Plot the resulting loss curve for the first 1000 steps for sanity check.
Use the resulting score model cond_score_net to estimate the scores at a 2D grid of points in the domain

 for all noise levels. Plot the estimated scores as a vector field using a quiver plot (each in a separate
plot), and discuss the extreme cases: and vs the real data scores from Task 3 with an equivalent standard deviation

(i.e.). To guide your intuition, plot the respective at a 2D grid of points in the

domain using the method from Task 2.

Task 12. Now that we have a noise-conditional score model approximating the sequence of scores
 we can use the Annealed version of Langevin dynamics to produce samples from . Repeat Task

5 using the estimated model from Task 11. Show the resulting samples for . Discuss the

 def __init__(self):
 super().__init__()
 self.cond_score_net = nn.Sequential(nn.Linear(3, 128),
 nn.Softplus(),
 nn.Linear(128, 128),
 nn.Softplus(),
 nn.Linear(128, 2))

 def forward(self, x, used_sigmas):
 x = torch.cat((x, used_sigmas), axis=1)
 return self.cond_score_net(x)/used_sigmas
cond_score_net = CondScoreNet()

In []: # training function: model, optimizer and loss
def train_annealed(cond_score_net, sigmas, batch_size=256, nsteps=10000, lr=0.001):

 # initialize the sampler, the optimizer and the loss list
 teacher = GMMDist()
 optimizer = optim.Adam(cond_score_net.parameters(), lr=lr)
 losses = []

 # train until stagnation (can't overfit due to infinite data)
 tqdm_steps = tqdm.trange(nsteps)
 for step in tqdm_steps:

 # sample x_i~p(x)
 samples = teacher.sample(batch_size)

 # sample noise stds and perturb the samples accorindgly
 labels = torch.randint(0, len(sigmas), (batch_size,))
 used_sigmas = sigmas[labels].view(samples.shape[0], 1)
 perturbed_samples = samples + torch.randn_like(samples) * used_sigmas

 # calculate the annealed slice-score-matching objective
 loss = annealed_sliced_score_matching(cond_score_net, perturbed_samples, used_sigmas, nv=1)

 # backprop to update the score model
 optimizer.zero_grad()
 loss.backward()
 optimizer.step()

 # print and save current loss
 losses.append(loss.detach().item())
 if step % 50 == 0:
 tqdm_steps.set_description('step: {}, loss: {:.5f}'.format(step, loss.item()))

 return losses, cond_score_net

L = 10

{σi}Li=1

20 × 20

[−8, 8] × [−8, 8]

σL σ1

~σi = √σ2
i + σ2 p (x; ~σi) 100 × 100

[−8, 8] × [−8, 8]

{∇~x log qσi(
~x)}Li=1 p (x)

n = 1280, ϵ = 0.0005,T = 100

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.quiver.html

results in terms of the relative mode weight compared to Task 9. Plot the resulting samples for each annealing step
 (you're encouraged to create an animation), and explain the effect of using multiple standard deviations.

Conclusion
To conclude, in this HW we have seen the Annealed version of Langevin dynamics that can circumnvent some of the
challenges when dealing with complex multi-modal distributions. We have also seen a popular approximation of the
score matching objective in Sliced Score Matching, and implemented an annealed version of it to learn a noise-
conditional score model. As mentioned in the beginning of this HW, similar models (much deeper + tricks) are currently
leading to state-of-the-art performance in image synthesis, and recently also in solving linear inverse problems. For those
of you interested in playing with such models, a lot of great resources are publicly available online, for example this
tutorial by Yang Song who is the author of some key papers in this field.

References
[1] Song, Y., et al. "Generative modeling by estimating gradients of the data distribution." NeuroIPS (2019). Link

[2] Song, Y., et al. "Sliced score matching: A scalable approach to density and score estimation." UAI (2020). Link

[3] Song, Y., et al. "Improved techniques for training score-based generative models." NeuroIPS (2020). Link

[4] Song, Y., et al. "Score-based generative modeling through stochastic differential equations." ICLR (2021). Link

i = 1, … ,L

https://colab.research.google.com/drive/120kYYBOVa1i0TD85RjlEkFjaWDxSFUx3?usp=sharing
https://yang-song.github.io/
https://proceedings.neurips.cc/paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf
http://proceedings.mlr.press/v115/song20a/song20a.pdf
https://proceedings.neurips.cc/paper/2020/file/92c3b916311a5517d9290576e3ea37ad-Paper.pdf
https://arxiv.org/pdf/2011.13456

