
Tutorial 1 – Introduction to 
ImageJ

Elias Nehme & Yoav Shechtman

27 October 2020 

Department of Biomedical Engineering, Technion
Computational optical imaging 336547

D. Burnette, J. Lippincott-Schwartz/NICHD



Fiji is Just ImageJ
ImageJ – an open source Java-based image processing program.

Fiji – an image processing package based on ImageJ. Includes many useful plugins contributed by the community.

Fiji is a "batteries-included" distribution of ImageJ which facilitate scientific image analysis (life and 
material sciences). 

• Intuitive and easy to use. 

• Can handle all image formats.

• Easy to automate.

• Bundles together many plugins into one installation. 

• Automatically manages plugins dependencies and updating.

• Its plugin structure gives the flexibility to adapt it for different needs.

Strengths of ImageJ
Plugins:
• https://imagej.net/Category:Plugins
• http://imagej.nih.gov/ij/plugins
• http://imagej.nih.gov/ij/plugins/mbf
• https://imagej.net/Cookbook
• And dozens of other lists and 

collections

https://imagej.net/Category:Plugins
http://imagej.nih.gov/ij/plugins
http://imagej.nih.gov/ij/plugins/mbf
https://imagej.net/Cookbook
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First steps
Download: https://imagej.net/Fiji/Downloads

Menu barTools bar

Status bar

Area Selection Tools

Line Selection Tools

Angle Tool

Point Tool

Wand Tool

Text Tool

Magnifying Glass

Scrolling Tool

Color Picker

… Other Tools

Measure (Ctrl+M)

ImageJ main window:

Memory management:

Edit → Options → Memory & Threads

Duplicate area shape to 
another image (Ctrl+Shift+E)

Gray value profile 
(Ctrl+K)

Duplicate ROI 
(Ctrl+Shift+D)

https://imagej.net/Fiji/Downloads


Opening data: Drag & Drop File → Open File → Import → Bio-formats



Menu bar:

Image menu:

Image → Adjust  → Brightness/Contrast 
(Ctrl+Shift+C)



Process menu:



Analyze menu:



Plugins menu:
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Image Processing Basics
The image histogram: 

Log 
Scale

The log display allows for the visualization of minor components. 
Note that there are unused pixel values.

The histogram shows the number of pixels of each value, regardless of location. 

Case 1:



The image histogram: 

Case 2:

In this case, the log display indicates that virtually all pixel 
values are used, even though they are a small percentage of 
the total.  

Log 
Scale



Brightness Adjustment:

The brightness adjustment essentially adds or subtracts 
a constant to every pixel, causing a shift in the 
histogram along the x axis, but no change in the 
distribution.

→

→

Adding a constant → Brighter Subtracting a constant → Darker



Contrast Enhancement:

For contrast enhancement, a lower value, in this case, 88, is set at 
zero, and a higher value, 166, is set at 255. 

The values of each of the pixels are adjusted proportionately.  
Note that because of the integer values, not all pixel values are 
used.



LookUp Tables:

Image → Color  → Edit LUT



Color channels:

The other way to treat color is to assign a set of 3 values, for Red, Green and Blue to each pixel.  
For common color images, each of the three colors is represented as an 8-bit value.  

One can think of a color image as consisting of three channels, one for each of the primary colors.



Color channels:

As we move the cursor over different parts of the image, the color values appear in the status bar of the program.

A color histogram plugin is available



Getting to know ImageJ

Image Processing Basics

Advanced Tools - Plugins 

First steps



Advanced Tools - Plugins 
BioVoxxel Toolbox:

What is the BioVoxxel Toolbox ? 

binary operations  
and analysis tools 

filter and threshold comparison 

background and lighting correction 

diverse line plots 

image filters 

neighbour and cluster tools 

Collection of plugins and 
macros to facilitate  
image processing and analysis 
methods 

ImageJ Conference 2015 – Madison 

Collection of plugins and macros to facilitate 
image processing and analysis methods

Pre-processing
• Background filters
• Image filters
Feature Extraction
• Optimized thresholding
Post-processing
• Binary operations
Analysis
• Speckle inspector
• Particle Analyzer
• Shape Descriptor Map
• Clustering Analysis

Jan Brocher, Thorsten Wagner



Shape Descriptor Maps 

ImageJ Conference 2015 – Madison 

BioVoxxel Toolbox – Shape Descriptors:



PSF Generator:

Hagai Kirshner, Daniel Sage



Iterative Deconvolution 3D – Cookbook:

Jan Brocher, Thorsten Wagner



Particle Tracker:

I. F. Sbalzarini and P. Koumoutsakos



Micro-Manager:

https://youtu.be/y-R9WmhzPdI

https://micro-manager.org/wiki/Credits



And much more:

https://youtu.be/y-R9WmhzPdI

https://micro-manager.org/wiki/Credits

If you want to go fast, go alone. If 
you want to go far, go together.
- African proverb
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Photon detectors definition and properties
Devices that detect events or changes in quantities (intensities) and provide a corresponding 
output (generally as an electrical signal)

the ‘best’ detector is sensitive

• Photon flux emission per unit area 
• Spatial resolution
• Temporal resolution
• Emission wavelength
• Signal-to-noise ratio
• Microscopy Technique

Practically there are many variables to consider:

Specimen properties



Detector properties

• Acquisition speed
• Quantum efficiency
• Noise levels
• Pixel size
• Dynamic range

Electron Multiplying and Intensified CCD 
Quantum Efficiencies

Quantum efficiency – Fraction of photon flux that 
contributes to the photocurrent in a photodetector or a pixel

Si-APD & PMT Quantum 
Efficiencies

EMCCD >= sCMOS > APD > PMT



Detector properties

• Acquisition speed
• Quantum efficiency
• Noise levels
• Pixel size
• Dynamic range

Single pixel detectors:

Array of pixels 
detectors:



Charged-Coupled Device (CCD) – single pixel

Grayscale

Analog-to-Digital 
Converter (ADC)

Photon shot 
noise

Dark noise

Read noise

Monochrome 
detectors

Color detectors
Filters out photons:



CCD Readout – Bucket Brigade Analogy

The serial register then sequentially shifts each 
row of image information to an output amplifier
as a serial data stream  

Photons composing the image have been collected 
by the pixel elements and converted into electrical 
potential 

CCD undergoes readout by shifting rows of image 
information in a parallel fashion, one row at a time, 
to the serial shift register

External voltages control the storage and movement 
of charges

For each exposure time period:



CCD Readout – Full process
1. Camera shutter is opened to begin accumulation of photoelectrons 
2. End of the integration period = shutter is closed 
3. Shift of accumulated charge 
4. An ADC assigns digital value for each pixel according to its voltage 
5. Each pixel value is stored in computer memory or camera frame buffer 
6. Serial readout process is repeated until all pixel rows of the parallel register are emptied 
7. CCD is cleared of residual charge prior to the next exposure

Full-Frame CCD Architecture Frame-Transfer CCD Architecture

Storage array is being read while the image array is 
integrating charge for the next image frame

Interline Transfer CCD Architecture

Separate photodiode and parallel readout 
CCD storage region in each pixel element



Frontside and Backside Illuminated CCDs

Light passes through 
structures used to transfer the 
charge from the imaging area 
→ reducing the sensitivity 
(mainly shorter wavelengths)

Light falls onto the back of the 
CCD in a thinned transparent 
region (about 10-15 microns) 
→ high quantum efficiency 
can be realized



EMCCD – Electron Multiplying CCD
Addition of an Electron Multiplication register 
(‘gain register’ between the usual serial shift 
register and the output amplifier) 

Provide a mechanism to improve signal-to-
noise ratio for signal levels below the CCD 
read-noise floor

When charge is transferred by applying a 
higher-than-normal voltage, secondary 
electrons are generated in the silicon by the 
process of impact ionization



EMCCD – Different effects
High on-chip multiplication gain for single-photon detection: any level of 
unsuppressed dark current is significant

Cooling system
• Dark noise arises from thermal fluctuations and is reduced by cooling the sensor
• The probability of secondary electron generation increases as temperature decreases→

higher gain values are achieved
• The variation of multiplication gain with temperature illustrates the importance of 

maintaining precise temperature stability

Example: 
Read noise = 60 electrons (rms) at 10 (MHz)
→ Sub-electron effective read noise level with gain ≥ 60 

Multiplication gain is independent of readout 
speed, the noise performance can be 
achieved at any speed

Nr / M



EMCCD – Noise
Due to the probabilistic nature of the impact ionization process a statistical variation 
occurs in the on-chip multiplication gain

The uncertainty in the gain produced introduces an additional system noise 
component which is evaluated quantitatively as the excess noise factor

SNR = (S ⋅ Qe) / Ntotal
S the number of incident photons per pixel
Q(e) the quantum efficiency
Ntotal the total noise in the system 

F the excess noise factor
D the total dark signal
N(r) the camera read noise
M the on-chip multiplication gain

Excess noise factor typically range between 1.0 
and 1.4 for multiplication gain factors up to 1000x

Ntotal = [(S ⋅ Qe ⋅ F2) + (D ⋅ F2) + (Nr / M)2] 1/2

Dark noise

Photon shot noise Read noise

Other gain-dependent source of noise:
clocking induced charge (CIC)



Detector properties

• Acquisition speed
• Quantum efficiency
• Noise levels
• Pixel size
• Dynamic range

Single pixel detectors:

Array of pixels 
detectors:



Complementary Metal Oxide Semiconductor (CMOS)

CMOS sensors 
require around 100x 
less power than CCD 
→ perfect choice for 
camera phone 
sensors

Issues with CMOS:
1. Fill factor of 30%: loss in sensitivity and SNR
2. Circuitry reflect incident photons: potential pixel crosstalk, light scattering, and diffraction
3. Lower quantum efficiency Microlens arrays

CMOS convert charge to voltage inside each pixel

CCD move photogenerated charge from pixel to pixel and convert it to voltage 
at an output node

Fill factor – the portion
of the entire pixel array 
that is used to detect 
incoming photons 
during exposure



CMOS VS CCD 

CCD CMOS

Fill Factor High Low

Image 
acquisition 

time

Slow 
(serial)

Fast 
(parallel)

Power 
consumption

High Low

Scientific CMOS (sCMOS) is a breakthrough technology based on next-generation CMOS 
image sensor design and fabrication techniques



A comparison – CCDs, EMCCDs, sCMOS
Parameter sCMOS (Zyla) Interline CCD EMCCD

Sensor Format 5.5 megapixel 1.4 to 4 megapixel 0.25 to 1 megapixel

Pixel Size 6.5 μm 6.45 to 7.4 μm 8 to 16 μm

Read Noise
1.2e- @ 30 frames/sec
1.45e- @ 100 frames/sec 4 - 10 e- < 1 e- (with EM gain)

Full Frame Rate (max.)
100 frames/sec @ full 
resolution 3 to 16 frames/sec ~ 30 frames/sec

Quantum Efficiency 

(max.)
80% 60% 90% 'back-illuminated'

65% virtual phase

Dynamic Range
25,000:1
(@ 30 frames/sec)

~ 3,000:1
(@ 11 frames/sec)

8,500:1
(@ 30 frames/sec with low 

EM gain)

Multiplicative Noise None None 1.41x with EM gain
(effectively halves the QE)



Summary – CCDs, EMCCDs, sCMOS

• CCD: standard for general microscopy applications, best choice for a variety of fluorescence microscopy applications
• EMCCD: best solution when imaging at very low light levels with relatively high speed, such as in single molecule fluorescence
• sCMOS: best solution for large field of views, high speed and sensitivity

sCMOS



Detector properties

• Acquisition speed
• Quantum efficiency
• Noise levels
• Pixel size
• Dynamic range

Single pixel detectors:

Array of pixels 
detectors:



Photomultiplier Tube (PMT)
• Low dark current, electron gains of 108: Very high signal-to-noise ratio
• PMTs do not store charge: nanosecond response to changes to input light fluxes
• Photon counting mode

Dark current  
• Thermal emission of electrons from the photocathode
• Leakage current between dynodes
• Electronic noise
• Stray high-energy radiation

S/N (Signal-to-Noise) = S/(Ns
2 + Nd

2)1/2

N(s) Shot noise 
N(d) Dark noise fluctuations 
S/N Signal-to-noise ratio 

• Larger and more 
uniform 
photosensitive area

• Sensitive 
photocathode 
design

• Faster rise times
• Higher quantum 

efficiency

TransmissionReflective

Useful in confocal microscope
Electrons multiplication by impact ionization 
Excess Noise Factor < 1.4



Detector properties

• Acquisition speed
• Quantum efficiency
• Noise levels
• Pixel size
• Dynamic range

Single pixel detectors:

Array of pixels 
detectors:



Avalanche Photodiode (APD)
APDs: semiconductor analog of photomultipliers
• Modest gain (50-1000)
• High quantum efficiency
• High dark current

1. Absorption of incident photons creates 
electron-hole pairs

2. A high reverse bias voltage creates a strong 
internal electric field, which accelerates the 
electrons through the silicon crystal lattice 

3. This produces secondary electrons by impact 
ionization

Excess Noise Factor 
ENF=κM+(2−1/M)(1−κ) > 2

κ the ionization 
coefficient ratio
M gain

EMCCD >= sCMOS > APD > PMT



P-N Junction – reminder

Acceptor

Donor



Single-Photon Avalanche Photodiode (SPAD)
SPADs are APDs reverse-biased at a voltage VA that exceeds breakdown voltage 
VB of the junction
At this bias – the electric field is so high that a single charge carrier injected into 
the depletion layer can trigger a self-sustaining avalanche (signal gain > 105)

1. The current rises swiftly (sub-nanosecond rise-time) to a macroscopic 
steady level in the milliampere range

2. The leading edge of the avalanche pulse marks (with picosecond time jitter) 
the arrival time of the detected photon

3. The current continues until the avalanche is quenched by lowering the bias 
voltage down to or below VB: the lower electric field is no longer able to 
accelerate carriers to impact-ionize with lattice atoms, therefore current 
ceases. This stops the breakdown or resets the APD

4. In order to be able to detect another photon, the bias voltage must be 
raised again above breakdown

Single photon counting at 10MHz with dark count rates well below 1kHz & 
quantum efficiency reaching 90%



Applications – PMTs & SPADs
PMT
• Confocal microscopy
• Fluorescence spectroscopy

SPAD
• TCSPC: time-correlated single photon counting
• Single-molecule detection
• STED microscopy 
• Fluorescence correlation spectroscopy (FCS) 

SPAD arrays
• 100 000 Frames/s 64x32 Single-Photon Detector Array for 2-D 

Imaging and 3-D Ranging
• Fluorescence lifetime imaging microscopy and correlation 

spectroscopy



Detector properties

• Acquisition speed
• Quantum efficiency
• Noise levels
• Pixel size
• Dynamic range

Single pixel detectors:

Array of pixels 
detectors:
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𝑗2𝜋𝑓𝑡𝐹 𝑓 𝑑𝑓

Fourier Optics
Description of propagation of light waves based on harmonic analysis (FT) and linear systems

Harmonic analysis (FT) 

Linear systems

If the response to each harmonic 
function is known → the response to 
an arbitrary input is determined 

Match the forward traveling plane wave

𝜔 =
2𝜋

𝑇
= 2𝜋𝑓Angular frequency

𝑘 =
2𝜋

𝜆
= 2𝜋𝜐Wave number



𝑗2𝜋𝑓𝑡

2𝜋𝑓𝑡

𝑗2𝜋𝑓𝑡

Plane wave
The optical wave equation: 

𝜔 =
2𝜋

𝑇
= 2𝜋𝑓

𝑘 =
2𝜋

𝜆
= 2𝜋𝜐

The monochromatic wave:

amplitude phase

Angular frequency

Wave number

𝑢 = 𝑢 𝑟, 𝑡Wave function

𝑐 =
𝑐0
𝑛

Light speed in a medium

The complex wavefunction:

Helmholtz equation

𝑘 =
2𝜋𝑓

𝑐
=
𝜔

𝑐

𝜆 =
𝑐

𝑓

Laplacian operator

Plane wave – Simplest solution of the 
Helmholtz equation



Plane wave 𝜔 =
2𝜋

𝑇
= 2𝜋𝑓

𝑘 =
2𝜋

𝜆
= 2𝜋𝜐𝑐 =

𝑐0
𝑛

𝑢 = 𝑢 𝑟, 𝑡 Angular frequency

Wave number

Wave function

Light speed in a medium

𝑘 =
2𝜋𝑓

𝑐
=
𝜔

𝑐
𝜆 =

𝑐

𝑓

The wavefront (surface with constant 
phase):

Parallel planes perpendicular to the wave vector

𝑘 = 𝑘𝑥, 𝑘𝑦 , 𝑘𝑧

Complex amplitude

Integer

There is one-to-one correspondence between: 

Plane wave Harmonic function

𝑘𝑥
2 + 𝑘𝑦

2+ 𝑘𝑧
2 = 𝑘2 =

2𝜋

𝜆

2

Harmonic function Plane wave

𝑘𝑧 = ± 𝑘2 − 𝑘𝑥
2 − 𝑘𝑦

2 forward traveling wave



Fourier Optics principles

Harmonic analysis (FT) Linear systems

An arbitrary function can be analyzed as a 
superposition of harmonic function → An arbitrary 
wave may be analyzed as a sum of plane waves

Describing the propagation of light through linear 
optical component using linear-system approach

Impulse response function
Transfer function

𝑈 𝑥, 𝑦, 0 𝑈 𝑥, 𝑦, 𝑑



Transfer function of Free space
Propagation of monochromatic optical wave in the free space between the planes z=0 and z=d: 

Input (known) Output

Linear + Shift invariant (LSI) system

Impulse response function
Transfer function𝐻 𝜐𝑥, 𝜐𝑦

ℎ 𝑥, 𝑦

𝐻 𝜐𝑥 , 𝜐𝑦 =
𝑔(𝑥, 𝑦)

𝑓(𝑥, 𝑦)
= exp −𝑗𝑘𝑧𝑑

𝑘𝑧 = 𝑘2 − 𝑘𝑥
2 − 𝑘𝑦

2



Transfer function of Free space

Spatial shift

Evanescent wave

Attenuation 
factor

= 0
LPF

Cut off frequency
~𝜆−1

Fresnel approximation:

Paraxial approximation
𝐻0 = exp −𝑗𝑘𝑑

a largest radial distance in the output plane



Impulse response of Free space
Fresnel approximation:

𝐹−1

ℎ0 =
𝑗

𝜆𝑑
exp −𝑗𝑘𝑑

Fraunhofer approximation:

If the propagation distance d is sufficiently long, the only plane wave that contributes to the complex 

amplitude at a point (x, y) in the output plane, is the wave with direction making angles 𝜽𝒙 =
𝒙

𝒅
and 𝜽𝒚 =

𝒚

𝒅
with the optical axis

𝜐𝑥 =
x

λd
𝜐𝑦 =

y

λd
Paraxial approximation:

Input plane confined to a circle of 
radius b

Output plane confined to a circle of 
radius a



Fourier-Transform Property of a Lens

Plane wave

Paraboloidal wave

Lens maps each direction 𝜽𝒙, 𝜽𝒚 into a single point

𝜽𝒙𝒇, 𝜽𝒚𝒇 In the focal plane

Assuming paraxial waves and using Fresnel approximation: 

Phase factor quadratic function

𝑑 = 𝑓

Regardless of d:

𝟐𝒇 system



𝑋 𝑓 𝑥 𝑡 ֞
ℱ
𝑋 𝑓

𝑋1/𝑇 𝑓 1/𝑇

𝑋𝑁 𝑘

FT, DTFT & DFT
Continuous Fourier Transform - FT

Discrete Time Fourier Transform - DTFT

𝑋 𝑓 = ℱ 𝑥 𝑓 = න
−∞

∞

𝑥 𝑡 𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡

𝑋1/𝑇 𝑓 = ℱ ෍

𝑛=−∞

∞

𝑥 𝑛 𝛿 𝑡 − 𝑛𝑇 𝑓 = ෍

𝑛=−∞

∞

𝑥 𝑛 𝑒−𝑖2𝜋𝑓𝑛𝑇

Poisson Formula:

෍

𝑛=−∞

∞

𝑥 𝑛 𝑒−𝑖2𝜋𝑓𝑛𝑇 = ෍

𝑘=−∞

∞

𝑋 𝑓 − 𝑘/𝑇

N samples per cycle T

Discrete Fourier Transform - DFT

𝑋𝑁 𝑘 = 𝑋1/𝑇 ൗ𝑘 𝑁𝑇 = ෍

𝑛=0

𝑁−1

𝑥 𝑛 𝑒−𝑖2𝜋𝑘𝑛/𝑁

𝜔 =
2𝜋

𝑇
= 2𝜋𝑓

Sampling in time domain
Periodic in frequency domain

FT and DTFT relation

Sampling in both time and 
frequency domain



DFT properties
Invertible linear transformation

𝑢𝑘 = 𝑒−𝑖2𝜋𝑘𝑛/𝑁 | 𝑛 = 0,1, … , 𝑁 − 1
𝑇

Orthogonal basis

𝑋𝑁 𝑘 = ෍

𝑛=0

𝑁−1

𝑥 𝑛 𝑒−𝑖2𝜋𝑘𝑛/𝑁

𝑋𝑁 𝑘 = 𝑋𝑁 𝑘 + 𝑁

N-periodic

Translation

𝑥 𝑛 → 𝑥 𝑛 −𝑚 ֞
ℱ
𝑋[𝑘] → 𝑋[𝑘]𝑒−𝑖2𝜋𝑘𝑚/𝑁

𝑥 𝑛 =
1

𝑁
෍

𝑘=0

𝑁−1

𝑋𝑁 𝑘 𝑒𝑖2𝜋𝑘𝑛/𝑁

Convolution

𝑥 𝑛 ∗ 𝑦 𝑛 ֞
ℱ
𝑋 𝑘 𝑌[𝑘]

&

𝑋 𝑘 ∗ 𝑌 𝑘 ֞
ℱ
𝑁 ∙ 𝑥 𝑛 ∙ 𝑦[𝑛]

𝑋 𝑘 → 𝑋 𝑘 − 𝑝 ֞
ℱ
𝑥[𝑛] → 𝑥[𝑛]𝑒𝑖2𝜋𝑝𝑛/𝑁

𝑢𝑘 =
1

𝑁
𝑒−𝑖2𝜋𝑘𝑛/𝑁 | 𝑛 = 0,1, … , 𝑁

𝑇
Orthonormal basis – Unitary DFT matrix

Parseval’s Theorem – Energy conservation

෍

𝑛=0

𝑁−1

𝑥[𝑛] 2 = ෍

𝑘=0

𝑁−1

𝑋[𝑘] 2

𝑥 𝑛 = 𝑥 𝑛 + 𝑁

&

The signal must be periodic – if not it is concatenated

Signal energy unchanged

𝐹 ∙ 𝐹∗ = 𝐼



Fast Fourier Transform (FFT)
𝑋𝑁 𝑘 = ෍

𝑛=1

𝑁

𝑥[𝑛]𝑒−2𝜋𝑖(𝑛−1)(𝑘−1)/𝑁

Spectral shift:

0   1   2 … ... ... N/2-2    N/2-1    N/2 -N/2   -(N/2-1)   -(N/2-2) -2  -1 … ... ... 

x-axis in MATLAB:

Time to Frequency conversion:

Algorithm that computes the DFT of a sequence

FFT

𝑑𝑡 = 1/𝑓𝑠 &    𝑇 = 𝑛/𝑓𝑠 𝑑𝑓 = 𝑓𝑠/𝑛 &    𝐹 = 𝑓𝑠
Space between 
time samples

Sampling 
frequency

Total time
𝑇 = 𝑛 ∙ 𝑑𝑡

n – Number of 
samples Space between 

frequency samples
Max frequency



FFT in MATLAB
Quantity Description

x Sampled data

n = length(x) Window length (number of samples)

fs Samples/unit time

dt = 1/fs Time increment per sample

t = (0:m-1)/fs Time range for data

y = fft(x,n) Discrete Fourier transform (DFT)

abs(y) Amplitude of the DFT

(abs(y).^2)/n Power of the DFT

fs/n Frequency increment

f = (0:n-1)*(fs/n) Frequency range

fs/2 Nyquist frequency

y0 = fftshift(y); % for visualizing the Fourier transform with the zero-frequency 

component in the middle of the spectrum.

f0 = (-n/2:n/2-1)*(fs/n); % 0-centered frequency range

power0 = y0.*conj(y0)/n; % 0-centered power

Taking half the 
range

FFT shift 

𝑑𝑡 = 1/𝑓𝑠 &    𝑇 = 𝑛/𝑓𝑠
Space between time 

samples
Sampling frequency Total time

𝑇 = 𝑛 ∙ 𝑑𝑡

𝑑𝑓 = 𝑓𝑠/𝑛 &    𝐹 = 𝑓𝑠
Space between frequency 

samples

n – Number of 
samples

Max frequency



A Lens in MATLAB

𝑔 𝑥, 𝑦 = ℎ𝑙𝐹
𝑥

𝜆𝑓
,
𝑦

𝜆𝑓
=ඵ

−∞

∞

𝑓 𝑢, 𝑣 𝑒
−𝑖2𝜋

𝑥
𝜆𝑓
𝑢 +

𝑦
𝜆𝑓
𝑣
𝑑𝑢𝑑𝑣

𝑔[𝑘, 𝑝] = 𝐹[𝑘, 𝑝] = ෍

𝑛=0

𝑁−1

෍

𝑚=0

𝑁−1

𝑓[𝑛,𝑚]𝑒−2𝜋𝑖[𝑛𝑘+𝑚𝑝]/𝑁

⇒ 𝑘 =
𝑛

𝜆𝑓
→

𝑛

𝜆𝑓
∈ 𝑑𝑓𝑛 ∙ 0, … , 𝑁 − 1

2D DFT & spatial:

Lens FT (d=f)

𝑓𝑚𝑎𝑥,𝑛 =
1

𝑑𝑛
→ 𝑑𝑓𝑛 =

𝑓𝑚𝑎𝑥,𝑛

𝑁
𝑓𝑚𝑎𝑥,𝑛: equivalent sampling 
frequency. A single measurement is 
performed per physical (pixel) size 𝑑𝑛⇒ 𝑘 ∈ 𝑑𝑓𝑛 ∙ 0, … , 𝑁 − 1

𝑛 =
𝜆𝑓

𝑁 ∙ 𝑑𝑛
∙ 0, … ,𝑁 − 1

𝑁 ∙ 𝑑𝑛 ???

𝑋𝑁 𝑘 = ෍

𝑛=0

𝑁−1

𝑥 𝑛 𝑒−𝑖2𝜋𝑘𝑛/𝑁1D DFT:

𝑑𝑡 = 1/𝑓𝑠 &    𝑇 = 𝑛/𝑓𝑠
Space between time 

samples
Sampling frequency Total time

𝑇 = 𝑛 ∙ 𝑑𝑡

𝑑𝑓 = 𝑓𝑠/𝑛 &    𝐹 = 𝑓𝑠
Space between frequency 

samples

Pixel size
That follows Nyquist

Time:

n – Number of 
samples

Max frequency



A Lens in MATLAB

D

𝑓-number:  𝑓# =
𝑓

𝐷
=

1

2𝑁𝐴

Nyquist Sampling:     𝑑𝑥 = 0.61
𝜆

𝑁𝐴

1

2
⟹ 𝑑𝑛 = 𝑑𝑥

Diffraction Limit – Rayleigh Criterion:     ∆𝑑 = 0.61
𝜆

𝑁𝐴

𝑓𝑚𝑎𝑥,𝑛 =
1

𝑑𝑛
→ 𝑑𝑓𝑛 =

𝑓𝑚𝑎𝑥,𝑛

𝑁

𝑵: # of Fourier samples

Should one desire to improve the Fourier domain sampling resolution, he may do so by padding the image with 
additional elements (thereby increasing the “numerical” image size)

𝑛 =
𝜆𝑓

𝑁 ∙ 𝑑𝑛
∙ 0, … , 𝑁 − 1

𝑵 determines the sampling resolution in the Fourier domain. Technically, N is 
entirely determined by the lowest frequency component. In an 𝐾 × 𝐾 image, 
the “largest” feature is the size of the image itself. Therefore, 𝑁 = 𝐾

𝑁 ∙ 𝑑𝑛 ???
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Spatial resolution 
Subject of passionate scientific debate for decades:

The minimum resolvable distance 
between two point-sources 
emitting at the same time

With the development of fluorescence nanoscopy techniques this debate has resurfaced:

Li, Dong, and Eric Betzig, Science (2016)

Classical resolution definitions:

STED STORM/PALM

SIM



Spatial resolution – PSF and OTF 

~diffraction limit

For visible light: 
Lateral resolution~200nm

OTF is the normalized Fourier transform of the 
PSF of the optical system

Convolution with the PSF acts as a low-pass filter

Axial resolution~500nm

http://zeiss-campus.magnet.fsu.edu/articles/superresolution/supersim.html

http://zeiss-campus.magnet.fsu.edu/articles/superresolution/supersim.html


Harmonic Functions & Complex Amplitudes

Microscopy Course  2014  -  Lecture 16

y 

x 

kx 

ky 

ky 

kx 

Real space 
(Fourier Transformation) 

Frequency space 

16

Real space 
(Fourier Transformation) 

Frequency space 

Image = superposed periodicities

Real space (xy) Frequency space (kx, ky)
FFT

Real space (𝑥,𝑦) Spatial Frequency Space (𝑘𝑥, 𝑘𝑦)

FFT

Microscopy Course  2014  -  Lecture 16

kx 

ky 

y 

x 

ky 

kx 

17

Real space 
(Fourier Transformation) 

Frequency space 

Image = superposed periodicities

Real space (xy) Frequency space (kx, ky)
FFT

Microscopy Course  2014  -  Lecture 16

y 

x 

kx 

ky 

ky 

kx 

Real space 
(Fourier Transformation) 

Frequency space 

16

Real space 
(Fourier Transformation) 

Frequency space 

Image = superposed periodicities

Real space (xy) Frequency space (kx, ky)
FFT

Microscopy Course  2014  -  Lecture 16

kx 

ky 

y 

x 

ky 

kx 

17

Real space 
(Fourier Transformation) 

Frequency space 

Image = superposed periodicities

Real space (xy) Frequency space (kx, ky)
FFT



Harmonic Functions & Complex Amplitudes

The classical limit of 
resolution in the 
microscope 
translates into 
frequency space, 
defining a maximum 
observable spatial 
frequency:

An image may be analyzed as a sum of harmonic functions of 
different spatial frequencies and complex amplitudes 

Microscopy Course  2014  -  Lecture 16

kx 

ky 

y 

x 

ky 

kx 
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Real space 
(Fourier Transformation) 

Frequency space 

ky 

kx high N.A.

Cut-off frequency!

2 N.A. / λ !

Image = superposed periodicities

Real space (xy) Frequency space (kx, ky)
FFT

Real space (𝑥,𝑦) Spatial Frequency Space (𝑘𝑥, 𝑘𝑦)



Fourier-Transform Lens Property – A Reminder

𝑓 𝑥, 𝑦 𝐹 𝑘𝑥 =
𝑥

𝜆𝑓
, 𝑘𝑦 =

𝑦

𝜆𝑓
Fourier Transform

In short: the “finer” the image features, the higher the spatial frequency, the “finer” the effective grating, the 
larger the diffraction angle and the farther from the optical axis is the focused spot on the focal (Fourier) plane

Each harmonic function in the 
image correspondingly acts as a 
local diffraction grating, thus 
producing plane waves traveling at 
an angle with the optical axis

A “spatial frequency” → frequency 
of a harmonic function with which 
the image is analyzed (previous 
slides)

The lens subsequently performs a Fourier transform; consequently, harmonic functions (complex exponentials) 
are transformed into spots



Structured Illumination Microscopy (SIM) – Concept

Moiré fringes – (a) and (b) are two examples of fine patterns. When one is superimposed onto the other, a 
coarser beat pattern—Moiré fringes—appears (c) 

2x lateral resolution improvement over diffraction-limited imaging 

→ Encoding high frequency information in the form of 
lower (observable) frequency components

Resolution is stretched from k0 to k1 + k0

The magnitude of k1 cannot exceed that of k0

→ Ultimate theoretical resolution limit becomes 2k0

Rotated through steps of 
120 degrees

Artificially move unobservable high-frequency information into the observable region through frequency 
mixing with a known illumination structure

Object

Excitation
Illumination Emission



SIM – Formulation

Obtaining 3 elements in k space – the original 
one and 2 more which are shifted versions of 
the original



SIM – Formulation
Three SIM images – 𝐷𝜃,𝜙1

𝒓 , 𝐷𝜃,𝜙2
𝒓 and 𝐷𝜃,𝜙3

𝒓 – of the specimen are acquired, corresponding to three

different illumination phases; typically 𝜙1 = 0° , 𝜙2 = 120° and 𝜙3 = 240°

Subsequently, the ungraded
approximations of ሚ𝑆 𝒌 , ሚ𝑆ሺ

ሻ
𝒌

− 𝒑𝜃 and ሚ𝑆 𝒌 + 𝒑𝜃 are obtained
by Wiener Filtering of their
corresponding noisy estimates
obtained by Eq. 5



Wiener filter: “regularize” the problem  ො𝑥𝑓 =
ℎ𝑓
∗

ℎ𝑓
2
+

1

𝑆𝑁𝑅𝑓

⋅ 𝑦𝑓 =
1

ℎ𝑓

ℎ𝑓
2

ℎ𝑓
2
+

1

𝑆𝑁𝑅𝑓

⋅ 𝑦𝑓

Weiner filter – A Reminder
Consider a convolution system:

𝑥 ℎ 𝑦

𝑦𝑓 = ℎ𝑓 ⋅ 𝑥𝑓 + 𝑛

Real world:

We can’t just divide in frequency domain because there are zeros in ℎ𝑓

𝑦 = ℎ ∗ 𝑥 𝑦𝑓 = ℎ𝑓 ⋅ 𝑥𝑓 What about  ො𝑥𝑓 = 𝑦𝑓/ℎ𝑓?

This suppresses frequencies where the SNR is low (high noise). 

And acts as an inverse filter where the noise is negligible.



SIM – Formulation

By changing the angular orientation 𝛉 of 
the illuminating sinusoidal pattern 
(𝜃1 = 0° , 𝜃2 = 60° and 𝜃3 = 120°
suffices), and by repeating the above
procedure, (almost) all frequency content 
of specimen lying within a circular region of 
radius twice of that governed by the OTF of 
optical system may be computed (Fig. (f))

→ Enabling spatial reconstruction of 
specimen with twice the resolution than 
that which is directly obtainable using the 
same optical system

Finally, the centers of the frequency components ሚ𝑆 𝒌 − 𝒑𝜃
and ሚ𝑆 𝒌 + 𝒑𝜃 are sub-pixelly shifted by +𝒑𝜃 and −𝒑𝜃, 
respectively, in the reciprocal (Freq.) space (Fig. (c))



Raw SIM images Shift pattern through 3 phases at 3 angles (total 9)



SIM – Experimental Procedure

1. Acquisition of raw SIM images (3X3)

2. System OTF determination

Intensity distribution of hundreds of 100nm fluorescent microspheres super-
imposed and averaged to obtain an approximation of the system PSF→
Fourier Transform of this PSF provides an estimate of system OTF

3. Preprocessing of raw SIM images

a. Intensity normalization: Raw SIM images re-scaled to have identical global 
mean and standard deviation (bleaching, intensity fluctuations, differences
in intensity between illumination pattern angles, total intensity and motion 
variation)

b. Background removal: morphological operators, scaled substraction
c. Image Processing & Filtering

4. Reconstruction of high resolution image using SIM-RA



SIM – Example 



SIM – Reconstruction Artifacts
Stripes High frequency noise Halo / Doubling

Bleaching, Drift or vibrations, 
Moving particles

Low contrast-to-noise, 
Low modulation 
contrast

Spherical aberration caused by 
Refractive index mismatch

SIM algorithm assumes a perfectly matched PSF! 
When it detects out of focus light from mismatched PSF, 
it assumes this is real signal & reconstructs it 

Balance between contrast and bleaching



SIM – Reconstruction Artifacts → Quality Control

Microscopy Course  2014  -  Lecture 16

H3K4me3!

RNA Pol II!

DAPI

Bad SI reconstruction

41

x

z

x

y

Quality control: Reconstruction artifacts 

Good SI reconstruction



SIM – Reconstruction Artifacts → Quality Control

Microscopy Course  2014  -  Lecture 16 42

Quality control by Fourier analysis

(FFT green)

Bad SI reconstruction Good SI reconstruction

x

z



2D SIM – Optical system

Diffraction Grating or 
Spatial Light Modulator 



3D SIM – Optical system

Diffraction Grating or 
Spatial Light Modulator 



3D SIM – Concept

3 Beam Interference Creates Pattern in Z 
3D pattern gives 2x increase in axial resolution 

X 
Z 

Focal Plane 

BiteSizeBio Seminar | 06 May 2015 22 

2 Beam Interference Sinusoidal Pattern 
No increase in contrast or resolution in Z 

X 
Z 

Focal Plane 

BiteSizeBio Seminar | 06 May 2015 20 

2D SIM

3D SIM

Conventional OTF

2 beams

3 beams



Raw 3D SIM images Shift pattern through 5 phases at 3 angles (total 15)



SIM – How to get the best image?



SIM – Pros & Cons

➕Multicolor, standard dyes

➕3D with 2x resolution in XY and Z

➕Massive contrast enhancement / High dynamic range

➕Optical sectioning over large volumes

➕Sensitive (EMCCD and sCMOS) and fast (SLM)

➕Fast imaging over a large field of view

➖Moderate lateral resolution improvement

➖Mathematical reconstruction which may lead to artifacts

➖High requirements on sample quality and system calibration

By projecting a sinusoidal fringe pattern onto 
the specimen, SIM images the fringe 

efficiently only on the parts of the specimen 
that are in focus. The out-of-focus 

background can be removed 



SIM – Experimental results

Gustafsson et al. Biophysical Journal (2008) Dong Li et al. Science (2015)
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Nyquist Sampling Theorem
Traditional sampling method: 

If a function x(t) contains no frequencies higher than B hertz, it is completely determined by giving its ordinates at 
a series of points spaced 1/(2B) seconds apart:

𝒇𝒔𝒂𝒎𝒑𝒍𝒊𝒏𝒈 > 𝟐𝒇𝒎𝒂𝒙

Pixel size is small for acquiring high frequencies, hence for large field of 
view the number of pixels is large

1D case:

2D case:

→ Digital cameras in the megapixel range

Using silicon which converts photons to electrons in the visual wavelengths 



Image Compression
In a digital camera, the samples are obtained by a 2-D array of N pixel sensors on a CCD or CMOS imaging chip

We represent these samples using the vector x with elements x[n], n = 1, 2, . . . ,N → N ~ 106

Raw image data x is often compressed:

𝑥 =෍

𝑖=1

𝑁

𝛼𝑖𝜓𝑖

𝜓𝑖 𝑖=1
𝑁 NX1 orthonormal basis vectors

𝛼𝑖 N coefficients

𝜓 = 𝜓1 𝜓2 … |𝜓𝑁 𝛼 =

𝛼1.
.
.
𝛼𝑁

The aim is to find a basis 𝝍 where the coefficient vector α is sparse
→ where only K<<N coefficients are nonzero

Only the values and locations of the K significant coefficients are encoded

Matrix form:

Basis vectors for natural images:
• Discrete cosine transform (DCT) 
• Wavelet
→ On which the JPEG and JPEG-2000 
compression standards are based

𝑥 = 𝜓𝛼
NXN NX1NX1



Image compression – Sparse representation 

Transform the physical signal into a sparse dataset and register a fraction of the strongest coefficients

Wavelet basis

Decompose the signal into a sparse linear expansion

𝑥 =෍

𝑖

𝛼𝑖𝜓𝑖 such that 𝛼 0
0 = K

sparse

Low freq.

High freq.

𝑙𝑝 norm = σ |𝑥𝑖|
𝑝

1

𝑝



Sparsity - Reminder
How are unique sparse representations determined from signals? 

• Iterative Greedy Algorithm (MP): 𝑙0–norm minimization, non-convex
• Relaxation (BP): 𝑙1–norm minimization, convex→ optimization problem promoting sparsity

𝑙0 norm 𝑥 0
0 = #non-zero elements

𝑙1 norm 𝑥 1 =σ |𝑥𝑖|

𝑙2norm 𝑥 2 = σ |𝑥𝑖|
2

1

2

ቊ
𝐴 = 1.5 1

𝑦 = 5

⇒ 1.5 1
𝐴

ถ

𝑥1
𝑥2
𝑥

= ณ5
𝑦

𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑠𝑝𝑎𝑐𝑒
𝑥2 = 5 − 1.5𝑥1

𝑥
0
= ቐ

0, 𝑥1 = 𝑥2 = 0
1, 𝑥1 = 0 𝑜𝑟 𝑥2 = 0
2 , 𝑒𝑙𝑠𝑒

Example:



Sparsity - Reminder
Relaxation (BP): 𝑙1–norm minimization, convex→ optimization problem promoting sparsity

Sparsity argument: minimizes the “number of non-zero coefficients”

Signal constraint: Ensures that the signal x can be recovered from 
the sparse coefficients 𝛼

𝛼 Sparse coefficients of x in 𝜓

𝜓 Sparsifying basis

x Signal

𝑙1-solvers recover the best sufficiently sparse approximation of a signal by penalizing the 𝑙1-norm of 
the coefficients

𝑙1 norm 𝑥 1 =σ |𝑥𝑖|

argmin
𝛼

𝛼 1 such that 𝑥 = 𝜓𝛼

𝑥 =෍

𝑖

𝛼𝑖𝜓𝑖 such that 𝛼 0
0 = K

sparse
𝑥 =෍

𝑖

𝛼𝑖𝜓𝑖 such that 𝛼 1 = K
sparse



Another example of Sparsity – Total Variation Minimization
Sparse



Another example of Sparsity – Total Variation Minimization

𝛻𝑢 𝑖,𝑗 = 𝛻𝑢 𝑖,𝑗
𝑥
, 𝛻𝑢 𝑖,𝑗

𝑦

𝛻𝑢 𝑖,𝑗
𝑥
= ቊ

𝑢𝑖+1,𝑗 − 𝑢𝑖,𝑗
0

if  𝑖 < 𝑁
if  𝑖 = 𝑁

𝛻𝑢 𝑖,𝑗
𝑦
= ቊ

𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗
0

if  𝑖 < 𝑁
if  𝑖 = 𝑁

with

The total variation of 𝑢 is defined by 𝐽 𝑢 = ෍

1≤𝑖,𝑗≤𝑁

𝛻𝑢 𝑖,𝑗

Total Variation Minimization Problem

𝑥 1 =෍
𝑖=1

𝑁

𝑥𝑖

Recall the 𝑙1–norm 

If 𝑢 ∈ 𝑋 = ℝ𝑁×𝑁, the linear gradient operator 𝛻𝑢 is a vector in 𝑌 = 𝑋 × 𝑋 given by:

It is possible to use the sparsity assumption on the gradient of the signal and to perform 𝑙1 minimization



Image compression – Sparse representation 

• Huge information is acquired by sampling, although most of it is a waste

• Does the image of 4 points over a black background require to sample 106 points? 

1000x1000 pixels, 106 sample points 1000x1000 pixels, 106 sample points

Sparse Image

An alternative → Compressive sampling



Physical Signal Sampling Compres
s

Decode

Physical Signal

Compressive Sampling

Compressed Sensing (CS)

Sampling Compres
s

Decode

CS bypasses the sampling process → directly acquires a condensed representation



CS – Principles
Acquire directly condensed representation by using M < N linear measurements y between x and a collection of 
M test functions:

𝜙𝑚 𝑚=1
𝑀

To get: 
𝑦 𝑚 = 𝑥, 𝜙𝑚

𝜙 =

𝜙1_
.
.
_
𝜙𝑀

𝑦 =

𝑦1.
.
.
𝑦𝑀

Matrix form:

𝑦 = 𝜙𝑥
MXN NX1MX1

𝑥 = 𝜓𝛼
𝑦 = 𝜙𝜓𝛼

NXN NX1MXN

K<<M<N 

Since M < N there are infinitely many x  such that 𝜙𝑥 = 𝑦
→ The magic of CS is that 𝜙 can be designed such that sparse/compressible x can be recovered from the 
measurements y

Random matrix Sparsitfying basis

Rather than measuring pixel samples of the scene 
→measure inner products between the scene and a set of test functions

Each measurement is a random sum of 
pixel values taken across the entire image



CS – Principles
• Assume the physical signal 𝒙 is sparse
• Records M different linear combinations of all values of 𝑥

Recover 𝑥 from 𝑦
• Nyquist Theorem: 𝑀 = 𝑁 and Φ = 𝐼 is trivial
• Compressed Sensing Theory: 𝑀 < 𝑁 if 𝑥 is sparse (𝐾 nonzero entries). How?

argmin
𝑥

𝑥 1 such that Φ𝑥 = 𝑦

K<<M<N 



CS Theorem
• Candes, Romberg and Tao showed that one could almost always recover the K-sparse signal 𝒙 exactly by 

solving the convex problem:

Under the condition that 𝜱 obeys the “restricted isometry hypothesis”. 

• Alternatively, If the K-sparse signal is 𝛼 = Ψ𝑇𝑥:

When the measurement basis Φ cannot sparsely represent the elements of the sparsifying basis Ψ (𝑥 is                                  
sparse in a known orthorgonal system Ψ) – a condition known as incoherence of the two bases – and the number 
of measurements M is large enough, then it is possible to recover the signal 𝑥 from the measurements 𝑦

argmin
𝑥

𝑥 1 such that Φ𝑥 = 𝑦

Candes,E.J.,Romberg,J.,Tao,T. IEEE Trans. Inform. Theory 52 (2006), 489–509. 

Candès, E.J. IEEE Trans. Inform. Theory, 2004 

𝑀 ≥ Const ∙ 𝜇2∙ 𝐾 ∙ log(𝑁)

argmin
𝛼

𝛼 1 such that ΦΨ𝛼 = 𝑦

𝜇 = max
𝑖,𝑗

Φ𝑖 , 𝜓𝑗

Coherence

Spark, Mutual coherence

𝑥 0
0 ≤

𝜎𝑠𝑝𝑎𝑟𝑘

2
𝑥 0

0 ≤
1

2
1 +

1

𝜇



Incoherent Bases
• Spikes and sines (Fourier)

Ψ = 𝐼 Φ = idct(𝐼)

Φ = randn

• Spikes and “random basis”

Ψ = 𝐼

• Spikes and “random sequences”

Ψ = 𝐼 Φ

𝑦 = 𝜙𝜓𝛼
NXN NX1MXN

K<<M<N 



Incoherent Bases – Random matrices
• Spikes and sines (Fourier)

Ψ = 𝐼 Φ = idct(𝐼)

Φ = randn

• Spikes and “random basis”

Ψ = 𝐼

Gaussian measurements. The entries of matrix 
Φ are independently sampled from N(0,1/M)
Then if: 
K ≤ C · M/ log(N/M)
Φ obeys the restricted isometry property

𝑦 = 𝜙𝜓𝛼
NXN NX1MXN

K<<M<N 

• Spikes and “random sequences”

Ψ = 𝐼 Φ

Binary measurements. The entries of matrix Φ are 
independently sampled from the symmetric 
Bernoulli distribution P (Φki =±1/ M) = 1/2. Then if: 
K ≤ C ·M/ log(N/M)
Φ obeys the restricted isometry property

Fourier measurements. Φ is a partial Fourier matrix 
obtained by selecting M rows uniformly at random 
and renormalizing the columns (unit-normed). Then 
Candès and Tao showed that Φ obeys the restricted 
isometry property with overwhelming probability if: 
K ≤ C · M/(log N)6

CS places most of its computational complexity in the 
recovery system → Often has more substantial 
computational resources than the measurement system



Incoherent Sampling – Partial Fourier

Lustig, M.  IEEE Sig. Proc. Magazine, 2008 



CS Application – Single Pixel Camera 

Computes random linear measurements of the scene under view

The camera design reduces the required size, complexity, and cost 
of the photon detector array down to a single unit →
Enables the use of exotic detectors that would be impossible in a 
conventional digital camera

𝑥
𝑦[𝑚]

𝜙𝑚 𝑚=1
𝑀

argmin
𝛼

𝛼 1 such that    Φ𝜓𝛼 = 𝑦

𝑥 = 𝜓𝛼

Photomultiplier tube or an avalanche photodiode for low-light 
(photon-limited) imaging

𝑦 = 𝜙𝜓𝛼
NXN NX1MXN

K<<M<N 



Digital micromirror device (DMD) 

DMD – Reflective SLM that selectively redirects parts of the light beam

Spatial light modulator (SLM) modulates the intensity (or phase) of a 
light beam according to a control signal

The DMD consists of an array of bacterium-sized, electrostatically 
actuated micromirrors

Each mirror rotates about a hinge and can be positioned 
in one of two states (+10◦and −10◦ from horizontal) 
according to which bit is loaded

Light falling on the DMD can be reflected in two 
directions depending on the orientation of the mirrors
(to get “on” and “off” states)

Duarte et al. IEEE signal processing magazine (2008).



CS Application – Single Pixel Camera 
𝑥

𝑦[𝑚]

𝜙𝑚 𝑚=1
𝑀

argmin
𝛼

𝛼 1 such that    Φ𝜓𝛼 = 𝑦

𝑥 = 𝜓𝛼

K<<M<N 

𝑦 = 𝜙𝜓𝛼
NXN NX1MXN

K<<M<N 

The implementation of matrix Φ on the DMD requires a large amount of RAM memory 

256 × 256 
conventional image 

Single-pixel camera
M = 1,300 ~𝟏𝟎𝟗 !



Single Pixel Camera – MATLAB simulation 

argmin
𝑥

𝑥 𝑇𝑉 such that      Φ𝑥 = 𝑦

We need a fast and reversible transformation which does not require to construct a matrix 𝚽
Random Gaussian ensemble do not exhibit such a property although “randomness” is highly desirable for 
achieving maximum incoherence with the sparsifying matrix (equivalently satisfying for relatively large K-sparse 
signals, the restricted isometry property)

Total Variation Minimization 

real-valued scrambled 
Fourier ensemble

Fast and reversible transformation: FFT
Randomness: scrambling operator 

1. Randomly permute the samples of 𝑥
2. FFT

3. Sample randomly 
𝑀

2
≪ 𝑁 fourier coefficients

4. Separate 
𝑀

2
real and 

𝑀

2
imaginary part (to have real values)

Note: Pay attention to normalization! 

For randomness to the FFT (incoherence)

Actual DMD only real values are implemented 
(sine pattern and then cosine pattern)



MATLAB functions
Minimization Algorithms

l1eq_pd: solves the Basis Pursuit problem (P1)
l1qc_logbarrier: solves quadratically constrained 𝑙1 minimization (P2)

tveq_logbarrier: solves equality constraint TV minimization (TV1)
tvqc_logbarrier: solves quadratically constrainted TV minimization (TV2)

Randomized constructions

rand: pseudorandom values drawn from the standard uniform distribution on (0,1)
randn: pseudorandom values drawn from the standard normal distribution
randperm: random permutation of integers

Signal Processing

fft: applies the one dimensional fast fourier transform

And your most valued friend

help name: displays the help for the functionality specified by name, such as a function, operator, 
symbol, method, class, or toolbox
doc name: displays the reference page for name in the Help browser.

Least Squares 

→ 𝑥 = 𝐴𝑇𝐴 −1𝐴𝑇𝑦

argmin
𝑥

𝑦 − 𝐴𝑥 2

x = A\y , only rank(A) non zero coefficients

x = pinv(A)*y , min 𝑥 2

argmin
𝑥

𝑥 1 such that      A𝑥 = 𝑦

argmin
𝑥

𝑥 1 such that      A𝑥 − 𝑦 2 ≤ 𝜖

argmin
𝑥

𝑇𝑉(𝑥) such that      A𝑥 = 𝑦

argmin
𝑥

𝑇𝑉(𝑥) such that      A𝑥 − 𝑦 2 ≤ 𝜖

(P1)

(P2)

(TV1)

(TV2) When the measurements y 

are corrupted by noise



Dictionary Learning

argmin
𝛼

𝛼 1 such that    Φ𝜓𝛼 = 𝑦

Question: What 𝜓 is the best to represent our signal 𝑥 = 𝜓𝛼?

Answer: Optimize 𝜓 and 𝛼 jointly from the provided data 𝑦 ≜ Learn the dictionary 𝜓

argmin
𝜓,𝛼

𝛼 1 such that    ||𝑦 − Φ𝜓𝛼||2
2 ≤ 𝜖

Numerous algorithms, with the most prominent one being “K-SVD” invented by 
Michael Elad, Freddy Bruckstein and their student Michal Aharon (CS department).
Main Idea: alternate between 2 steps:
• Sparse Coding (MP or BP)
• Dictionary Update



Andrew Ng, ECCV 2010 Tutorial

Dictionary Learning



DCT Learned Dictionary

Aharon M., IEEE Trans. Image Proc., 2006 

Dictionary Learning: Image “Barbara”
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Shechtman et al. Nature photonics (2016)

5µm



Super-Resolution Localization Microscopy Concept
Resolving close fluorophores:

What determines 
the dimensions of 
the localized data 
point i.e. precision?

What determines 
the accuracy with 
which the data 
point is localized?

For visible light: 
Lateral 
resolution~200nm

1. Switchable fluorophores

2. Powerful localization 
algorithms

Probing biology at the nm scale via fluorescence

Gaussian fit



Localization Precision and Accuracy

𝜎𝑥 =
1

𝑛 − 1
෍

𝑖=1

𝑛

𝑥𝑝,𝑖 − ҧ𝑥𝑝
2

∆𝑥= ҧ𝑥𝑝 − 𝑥𝑝

FWHM𝑥 = 2𝜎𝑥 2 ln 2

ҧ𝑥𝑝: mean of all estimates 𝑥𝑝,𝑖

𝑥𝑝,𝑖: estimate 𝑖 of 𝑥𝑝

𝑥𝑝: true position of a particle

𝑛: number of estimates

Experimentally recorded 
image of a single emitter: Blue circles → experimentally determined position 

estimates from different images of the same emitter

Δ𝑥𝑦 = Δ𝑥
2 + Δ𝑦

2 − lateral localization accuracy

( ҧ𝑥𝑝, ത𝑦𝑝) – average of the estimated positions

(𝑥𝑝, 𝑦𝑝) – real particle position

𝜎𝑥𝑦 = 0.5 × 𝜎𝑥
2 + 𝜎𝑦

2 − lateral localization precision

Localization Precision: The spread of the estimates around its mean value

Localization Accuracy: The deviation of the mean measured position coordinates from the true position coordinate

∆𝑥=0 for an unbiased estimation → Accurate
Calculated only when the true position is known



Localization Precision and Accuracy
Localization Accuracy

∆𝑥= ҧ𝑥𝑝 − 𝑥𝑝• The algorithm estimating 𝑥𝑝 must be unbiased

• Insensitive to shot noise (does not involve individual measurements 𝑥𝑝,𝑖), sensitive to background, spatial 

photon distribution, detector and sample properties  

• No fundamental limit on the achievable localization accuracy

Localization Precision

𝜎𝑥 =
1

𝑛 − 1
෍

𝑖=1

𝑛

𝑥𝑝,𝑖 − ҧ𝑥𝑝
2

• Coherent light has a constant optical power

Average on the random photon arrivals is constant 



Localization Precision and Accuracy
Random arrival of photons in a light beam of power P within intervals of duration T. Although the optical power 
is constant the number n of photons arriving within each interval is random. 

Precision is affected by number of photons, emission profile of particles (fixed dipole, translation movement, 
diffraction of the light microscope), detector and sample properties

The number of photons arriving in a certain time interval 
follows a Poisson distribution, the standard deviation of 
which is known as shot noise

Photon registration: Poisson distribution

𝑝 𝑛 =
ത𝑛𝑛𝑒− ത𝑛

𝑛!
, 𝑛 = 0,1,2, … ቊ

mean: ത𝑛
variance: 𝜎𝑛2 = ത𝑛

Localization Precision

e.g. the presence of ത𝑛 = 100 photons is accompanied by an inaccuracy of ±𝜎𝑛 = 10 photons

Due to shot noise each image will have a slightly different center → the estimated  fluorophore’s position will 
give different results for each image



Minimum Variance Unbiased Estimation (MVUE)
Cramer-Rao Lower Bound

The best localization precision theoretically achievable is given by the square root of the Cramér-Rao lower 
bound (CRLB), which is defined as the smallest possible variance any unbiased estimation algorithm can have

Single emitter position

Unbiased estimator

Assumed measurement model

Likelihood function

Fisher information matrix



Localization Precision – CRLB 
Cramer-Rao Lower Bound

The best localization precision theoretically achievable is given by the square root of the Cramér-Rao lower 
bound (CRLB), which is defined as the smallest possible variance any unbiased estimation algorithm can have

Spatial distribution of photon positions that is dictated by the emission profile of the particle in combination 
with the light diffraction in the microscope 

Assuming shot noise, each pixel measurement will be Poisson distributed:

Resulting Fisher information matrix elements



Localization Precision – CRLB 
Cramer-Rao Lower Bound

The best localization precision theoretically achievable is given by the square root of the Cramér-Rao lower 
bound (CRLB), which is defined as the smallest possible variance any unbiased estimation algorithm can have

Isotropic emitter in or close to the focal plane, the PSF is approximately Gaussian:

Considering also background and pixelization:

Considering only shot noise (𝒃 = 𝟎), the precision limit becomes simple

𝑎2 pixel area



Spatial Resolution vs Localization Precision and Accuracy

High spatial resolution

Lower spatial resolution due to lower 
localization precision

Lower spatial resolution due to lower 
label density (Nyquist criterion)

Lower spatial resolution due to higher 
label displacement

Computing Localization 
precision and accuracy of 
an algorithm is not the 
same as determining the 
resolution of an image 
produced by a 
localization algorithm



The art of localizing emitters

Sub-pixel 2D localization of molecules:
❖ Center of Gravity (CoG)
❖ Least Squares (LS)
❖Weighted Least Squares (WLS)
❖Maximum Likelihood Estimation (MLE)

localized with 
nm accuracy 

Mathematically treated to fit a two-dimensional Gaussian 
function and localized with nanometer accuracy 



Center-of-Gravity (CoG)

• Does not require any prior knowledge 

• Very fast (non-iterative algorithm)

• Does not estimate the intensity or imaged size of molecules

• Sensitive to noise

• Biased estimator in the presence of background (towards center for uniform background)

ො𝑥0 =
σ𝑥,𝑦∈𝐷 𝑥 ሚ𝐼(𝑥, 𝑦)

σ𝑥,𝑦∈𝐷
ሚ𝐼(𝑥, 𝑦)

, ො𝑦0 =
σ𝑥,𝑦∈𝐷 𝑦 ሚ𝐼(𝑥, 𝑦)

σ𝑥,𝑦∈𝐷
ሚ𝐼(𝑥, 𝑦)

If the image profile is Gaussian, the center of gravity estimator is a maximum likelihood estimator

Mean pixel positions weighted by the intensity of the image data:



Fitting point-spread-function (PSF) models
A single molecule emitter is treated as an incoherent point source and is described by the PSF

PSF - proportional to the average number of photons at 
a given position relative to the source

pixelated + shot noise

Airy PSF is tedious for many practical calculations → PSF 
of  an isotropic source is often approximated as a 
Gaussian function

Gaussian approximation gives useful and reasonably 
accurate results for focused images of fluorophores

In the tails the approximation can break down as a 
Gaussian decays more rapidly than many PSFs → Poses 
issues in minimizing discrepancies between the model 
and the data in the edges of the image. 

Solution: Using a small ROI (tradeoff it discards useful 
information) 



Fitting point-spread function (PSF) models
Gaussian function ≈ real PSF of a 
microscope (due to pixelation and noise)
• Simplicity
• Robustness
• Computation efficiency

Symmetric 2D Gaussian function

PSF𝐺(𝑥, 𝑦|𝜽) =
𝜃𝑁
2𝜋𝜃𝜎

2
𝑒
−
𝑥−𝜃𝑥

2 2
+ 𝑦−𝜃𝑦

2 2

2𝜃𝜎
2

+ 𝜃𝑏

Integrated form of a symmetric 2D Gaussian function

PSF𝐺 𝑥, 𝑦 𝜽 = 𝜃𝑁𝐸𝑥𝐸𝑦 + 𝜃𝑏
𝐸𝑥 =

1

2
erf

𝑥 − 𝜃𝑥 +
1
2

2𝜃𝜎
−
1

2
erf

𝑥 − 𝜃𝑥 −
1
2

2𝜃𝜎

𝐸𝑦 =
1

2
erf

𝑦 − 𝜃𝑦 +
1
2

2𝜃𝜎
−
1

2
erf

𝑦 − 𝜃𝑦 −
1
2

2𝜃𝜎

𝜽 = 𝜃𝑥, 𝜃𝑦, 𝜃𝜎 , 𝜃𝑁, 𝜃𝑏

𝜃𝑥 sub-pixel molecular x-coordinate
𝜃𝑦 sub-pixel molecular y-coordinate

𝜃𝜎 imaged size of the molecule
𝜃𝑁 total number of photons emitted by the molecule
𝜃𝑏 background offset

Expected photon count at the integer pixel position (𝑥, 𝑦) for the parameters 𝜽 = 𝜃𝑥, 𝜃𝑦, 𝜃𝜎 , 𝜃𝑁, 𝜃𝑏

Considers the discrete nature of pixels present in digital cameras; 
assuming a uniform distribution of pixels with unit size 

The parameters are varied to find the values that give the best ‘fit’ to the data



Least-squares methods
Optimization problem typically solved by the Levenberg-Marquadt algorithm 

෡𝜽 = arg min
𝜃

𝜒2(𝜽|𝐷) = arg min
𝜃

෍

𝑥,𝑦∈𝐷

𝑤(ሚ𝐼 𝑥, 𝑦 − PSF(𝑥, 𝑦|𝜽))2

least-squares: 𝑤 = 1
All measurements are equally significant

weighted least-squares: 𝑤 = Τ1 𝑃𝑆𝐹(𝑥, 𝑦|𝜃)
Considers the uncertainty in the number of detected 
photons  

𝜽 = 𝜃𝑥, 𝜃𝑦, 𝜃𝜎 , 𝜃𝑁, 𝜃𝑏

𝜃𝑥 sub-pixel molecular x-coordinate
𝜃𝑦 sub-pixel molecular y-coordinate

𝜃𝜎 imaged size of the molecule
𝜃𝑁 total number of photons emitted by the molecule
𝜃𝑏 background offset
𝑤 one over expected variance of the signal per pixel

If the noise can be approximated as Gaussian, the weighted least squares algorithm is a maximum 
likelihood estimator

• No detailed knowledge (weighted) or none (𝑤 = 1) required on noise

• Weighting gives extra importance to the tails of the PSF – criteria often used to choose between LS and WLS 
in low background conditions (misspecifying the tail is less of an issue when there is substantial background)

• Weighting should be done with respect to the expected variance (i.e. the model prediction)

observed photon count

expected photon count (model)

For high-background fluorescence (>10 photons/pixel) OR high photon count



Maximum-Likelihood Estimator
Likelihood of the parameters 𝜽

Log Likelihood – Optimization problem typically solved by the Nelder-Mead method 

𝐿 𝜽|𝐷 = ෑ

𝑥,𝑦∈𝐷

PSF(𝑥, 𝑦|𝜽) ሚ𝐼 𝑥,𝑦 𝑒−PSF(𝑥,𝑦|𝜽)

ሚ𝐼 𝑥, 𝑦 !

෡𝜽 = arg max
𝜃

෍

𝑥,𝑦∈𝐷

ሚ𝐼 𝑥, 𝑦 ln PSF(𝑥, 𝑦|𝜽) − PSF(𝑥, 𝑦|𝜽)

Photon registration: Poisson distribution
PSF(𝑥, 𝑦|𝜽) expected photon count 
ሚ𝐼 𝑥, 𝑦 observed photon count

• Requires a model of noise (shot noise, or shot noise plus Gaussian read noise)

• Requires a good PSF model but can use an approximate PSF width (PSF width can be a fit parameter)

• Known to be unbiased, and consistent!

• In low background, center and crop the ROI to avoid PSF tail misspecifications

• For high-background fluorescence, the noise can be approximated as constant-variance Gaussian model

MLE estimates the positions with (often) the highest possible precision (approaches CRLB)

photons are usually 
independent of each 
other 



LS vs MLE 

Favor MLE when 
adequate
information is available 
on PSF shape and 
camera performance



Localization algorithms



Practical considerations in Localization Microscopy

1. Image filtering and feature enhancement
a. Averaging filter
b. Gaussian filter
c. Lowered Gaussian filter
d. Difference-of-Gaussian filter
e. Wavelet filter
f. Median filter
g. No filter

2. Finding approximate positions of molecules
a. Detection of local intensity maxima
b. Non-maximum suppression
c. Centroid of connected components
d. Threshold selection

3. Sub-pixel 2D localization of molecules
a. Today’s awesome tutorial

4. Sub-pixel 3D localization of molecules
a. PSF model
b. Defocusing models
c. Calibration of the imaging system
d. Localization uncertainty

5. The Crowded-field problem
a. Multiple-emitter fitting analysis
b. Model selection

6. Post-processing analysis
a. Removing molecules with poor localization
b. Local density filter
c. Merging of reappearing molecules
d. Lateral drift correction (cross-correlation)
e. Z-stage scanning

7. Visualization methods
a. Scatter plot
b. Histogram
c. Averaged shifted 

histograms
d. Gaussian rendering
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Position (pixels)

Diffraction-limited spot
recorded on camera

Localize: fit to a Gaussian

500 photons ↔ ~25 nm

𝜎

𝑤

𝑐

Localization precision

𝜎 ∝
1

𝑁

What about 
overlap?

Localizing sparse emitters



Ground Truth Camera Image

0.6 μm 0.6 μm

Multi-emitter Gaussian 
fitting will perform poorly!

High density fitting is challenging



Deep-STORM 
(Fully Convolutional ED)

Camera Image

1 μm 1 μm

Recovery

Simulated!

Deep-STORM general idea



2 μm

Real microtubules experiment



2 μm

*Experimental data - ground truth is not available.

Real microtubules experiment



2 μm

Qualitative assessment of the results



✓Similar or better resolution

✓Much faster computation time

✓Parameter free

✓Training entirely on simulations! 2 μm

Qualitative assessment of the results



Code: https://github.com/EliasNehme/Deep-STORM

For more details

https://github.com/EliasNehme/Deep-STORM


Impact on biology research
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Tracking Particles
Localization Tracking

Analysis

M
SD

 𝑟
2

Time lag

Confined

Brownian

Directed

2D Gaussian fit 10 -50 nm 
resolution

in
te

ns
ity

yx

𝜎 =
Τ𝜆 2

𝑁

Brownian

α>1 Super-diffusion (directed)
α<1 Sub-diffusion (confined)



Single Particle Tracking in Biology

1μm 

3D Tracking of EB1 
Dynamics in a Live Cell

Potassium channels 
tracking overlaid on CCP

Recruitment of Lyn to CD59 clusters



Single Particle Tracking in Biology
• In a particle tracking experiment, the sensor noise in the image acquisition system is transformed into a 

positioning error → computed particle trajectory is a noisy version of the true particle trajectory

• The Kalman filter finds the optimal state estimate for linear dynamic systems from sensor measurements in 
the presence of Gaussian noise

A Kalman filter is an optimal estimation algorithm used to estimate states of a system from indirect and 
uncertain measurements

Rudolf E. Kalman



State observers
State observers are used to estimate the internal states of a system:

https://www.mathworks.com/videos/series/understanding-kalman-filters.html

Question: why not put the sensor inside?

Answer: it will melt!

variables of interest are measured only indirectly



State observer and Kalman filter
State observers are used to estimate the internal states of a system:

• State observer utilizes feedback control to drive the estimated states to the true states

• Kalman filtering provides an optimal way of choosing the gain of this feedback controller



Kalman filter – Tracking the Position of a Vehicle
Kalman filters combine two sources of information: predicted states and noisy measurements

→ To produce optimal and unbiased estimates of system states

A fluorescently labeled biomolecule 
or biological complex 

A car

legitimate approximation

Measured Known Model

Q: How to improve        ? 



Kalman filter – Tracking the Position of a Vehicle

The filter is optimal in the sense that it minimizes the variance in the estimated states



Kalman filter – Estimation

A Priori 
estimate

A Priori 
covariance

A Posteriori 
estimate

A Posteriori 
covariance



Kalman filter – 1D Particle Tracking - MATLAB

• One-dimensional particle position 𝑥𝑘
at timestep 𝑘

• Constant directed movement 𝑢0
• Process noise, 𝑤𝑘 : thermal 

fluctuations at timestep 𝑘
• Measurement noise, 𝑣𝑘: zero-mean 

white noise at timestep 𝑘

𝑅𝑘~𝑅 = 𝜎𝑣
2

𝑄𝑘~𝑄 = 𝜎𝑤
2 = 2 × 𝐷 × 𝜏

𝑥𝑘 = 𝑥𝑘−1 + 𝑢0∆𝑡 + 𝑤𝑘

𝑦𝑘 = 𝑥𝑘 + 𝑣𝑘

𝑥𝑘 =
𝑥𝑘
𝑢0

𝐴 =
1 ∆𝑡
0 1

𝐶 =
1 0
0 1

𝑄𝑀𝐴𝑇 =
𝜎𝑤
2 0
0 𝟎

𝑅𝑀𝐴𝑇 =
𝜎𝑣
2 0
0 𝟎

+ 𝜀

state transition model

observation model

state estimate

process noise 
covariance matrix

measurement noise 
covariance matrix

𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝑤𝑘

ത𝑦𝑘 = 𝐶𝑥𝑘 + 𝑣𝑘

𝑆 = 𝑸 + 2 × 𝑅 𝑸 = 𝑆 − 2 × 𝑅
• 𝑆: variance of the measured displacement ≡ var(dy)

• 𝑅: a priori knowledge on the measurement noise

Estimation of 𝜎𝑤2

Assuming 𝑢0 is constant and noise free

Correcting division by zero



Kalman filter – 1D Particle Tracking - MATLAB

𝐾𝑘 = 𝐾 =
Τ𝑄 𝑅 + Τ𝑄 𝑅 2 + 4 Τ𝑄 𝑅

2 + Τ𝑄 𝑅 + Τ𝑄 𝑅 2 + 4 Τ𝑄 𝑅

Optimal value of K under assumptions of linear dynamics 
with Gaussian process and measurement noise

for k=1:N 

𝑥𝑘−1 =
𝑥𝑘−1
𝑢0

state estimate

ො𝑥𝑘−1 =
ො𝑥𝑘−1
𝑢0



Simulating realistic particle tracks - MATLAB

Guidelines
• 50 particle tracks
• Brownian motion
• 75% of particles undergoing 

linear motion
• particles undergoing splitting 

and merging events (50/50)

While 𝑀 < # of particles

1. Assign an initial number 𝑁 of sub-particles (drawn from a uniform random 
distribution [1,4])

2. Initialize the 3D particle position 𝑧0 = 0 randomly within the field of view (FOV)

3. Construct x, y, 𝑧 −trajectory (75% probability of undergoing xy linear motion). The 
𝑧 trajectory always consists of Brownian motion.

4. Assign the number 𝑁𝑆of splitting events (drawn from a uniform random distribution 
[1, 𝑁]) and the corresponding time points 𝑡𝑆 at which these occur (drawn from a 
uniform random distribution).  

5. Create an additional trajectory (linear motion at a 2D random orientation) which 
starts at the splitting time 𝑡 = 𝑡𝑆(1), ends at t = 𝑇 and whose initial point 
correspond to the position of 𝑝𝑖 at 𝑡𝑆(1).  This trajectory now corresponds to the 
one of a new particle 𝑝𝑖+1. Update the number of particles left in 𝑝𝑖.



Simulating realistic particle tracks - MATLAB

Guidelines
• 50 particle tracks
• Brownian motion
• 75% of particles undergoing 

linear motion
• particles undergoing splitting 

and merging events (50/50)

6. Repeat 5. 𝑁𝑆 − 1 times going through 𝑡𝑆. At this point you should obtain 𝑁𝑆
trajectories, all ending at t = 𝑇 and starting at t ∈ 0, 𝑡𝑆 1 ,… , 𝑡𝑆(𝑁𝑆 − 1)

7. Split the trajectory of the initial particle 𝑝𝑖 into 𝑁𝑆 segments/particles 𝑝𝑖+𝑁−1+𝑘
according to 𝑡𝑆 (𝑘 = 1:𝑁𝑆). Update the number of particles in each 𝑝𝑖+𝑁−1+𝑘. E.g.
an initial particle splitting two times produces five particles. 

8. With a probability of 50%, flip the trajectories (x,y,z,t,# of sub-particles) to convert 
splitting into merging events (fliplr).

9. Update the total number of particles 𝑀

end

The purpose of this simulated tracks  is to assess the performance of any particle tracking algorithm for a 
particular application 



Simulating realistic particle tracks – MATLAB – Optical image
• Acquisition Model & Pixelation

PSF𝐺 𝑥, 𝑦 𝜽 = 𝜃𝑁𝐸𝑥𝐸𝑦𝐸𝑧 + 𝜃𝑏
𝐸𝑥 =

1

2
erf

𝑥 − 𝜃𝑥 +
1
2

2𝜃𝜎
−
1

2
erf

𝑥 − 𝜃𝑥 −
1
2

2𝜃𝜎

𝐸𝑦 =
1

2
erf

𝑦 − 𝜃𝑦 +
1
2

2𝜃𝜎
−
1

2
erf

𝑦 − 𝜃𝑦 −
1
2

2𝜃𝜎

𝐸𝑧 =
1

2
erf

𝑧 − 𝜃𝑧 +
1
2

2 2𝜃𝜎
−
1

2
erf

𝑧 − 𝜃𝑧 −
1
2

2 2𝜃𝜎

𝜽 = 𝜃𝑥 , 𝜃𝑦 , 𝜃𝜎 , 𝜃𝑁, 𝜃𝑏

𝜃𝑥 sub-pixel molecular x-coordinate
𝜃𝑦 sub-pixel molecular y-coordinate

𝜃𝑧 sub-pixel molecular z-coordinate
𝜃𝜎 imaged size of the molecule
𝜃𝑁 total number of photons emitted by the molecule
𝜃𝑏 background offset

meshgrid, erf

• Quantum Efficiency & Poisson Noise

∀particles & time points

∀frames

poissrnd

• Readout Noise & Dark Current ∀frames

normrnd

• Discretization

𝑔 = 2𝑛 ൗ
𝑔
𝑓𝑤

𝑛: number of bits
𝑔: image stack of particles
𝑓𝑤: full well capacity

∀pixels

uint16

Alternative: 3D Gaussian centered on [𝜃𝑥, 𝜃𝑦 , 𝜃𝑧]



Illustration of Kalman filtering for position estimation in 2D 

https://en.wikipedia.org/wiki/Kalman_filter



Single Particle Tracking (SPT) using 𝝁-track 

https://downloads.openmicroscopy.org/u-track/2.1.1/artifacts/u-track-
2.1.1.pdf

scriptDetectGeneral: 
detection of diffraction-limited objects such as single 
molecules and small molecular aggregates 

scriptTrackGeneral: 
determines the final tracks based on a target motion 
model

plotTracks2D: 
statically plots the tracks generated by scriptTrackGeneral 

http://bigwww.epfl.ch/sage/soft/mij/

A Java package for running ImageJ and Fiji 
within Matlab

መ𝐴argmin = ෍

𝑖=1

Number
of rows

෍

𝑗=1

Number
of columns

𝐴𝑖𝑗𝐶𝑖𝑗



SPT methods



Nonlinear Systems: Extended KF, Unscented KF, and Particle Filter



Nonlinear Systems: Extended KF, Unscented KF, and Particle Filter
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The significance of knowing the Fourier phase 
Fourier phase contains more information than the Fourier magnitude:

Shechtman, Y., et al. IEEE signal processing magazine (2015)



Phase retrieval problem and reminder 
The recovery of a function given the magnitude of its Fourier transform:

Assuming paraxial waves and using Fresnel approximation: 

Phase factor quadratic function

𝑑 = 𝑓

Regardless of d:

𝟐𝒇 system



Phase retrieval problem 
Phase retrieval in optics: 
The electromagnetic field oscillates at rates of ~1015 Hz

→ No electronic measurement device can follow

Measuring the phase of optical waves involves additional
complexity, typically by requiring interference with another 
known field:

Phase is measured using the interference pattern of a beam which 
is split through two paths: a reference mirror and the sample

Impractical to implement for an existing microscope

The alternative is to recover the phase of the pupil function based on 
measurements of the intensity PSF and a phase retrieval algorithm

𝜆 =
𝑐

𝑓
𝑐 =

𝑐0
𝑛

Light speed in a medium



Optical Transfer Function & Point Spread Function - reminder

OTF is the normalized Fourier transform of the 
PSF of the optical system

Convolution with the PSF acts as a low-pass filter

http://zeiss-campus.magnet.fsu.edu/articles/superresolution/supersim.html

http://zeiss-campus.magnet.fsu.edu/articles/superresolution/supersim.html


Pupil Function, Optical Transfer Function & Point Spread Function
The pupil function is the projection of the OTFA onto the lateral 

𝒌𝒙, 𝒌𝒚 plane:

𝑘𝑧 𝑘𝑥, 𝑘𝑦 =
2𝜋𝑛

𝜆

2

− 𝑘𝑥
2 + 𝑘𝑦

2
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𝜆
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2
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2 + 𝑘𝑦

2

= 2𝜋
𝑛
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Normalized such that its value is unity at the radius of the 
limiting aperture

Pupil function 

Defocus → Spherical phase
Lateral shift → Linear phase



Maximum observable spatial frequency - reminder

The classical limit of 
resolution in the 
microscope 
translates into 
frequency space, 
defining a maximum 
observable spatial 
frequency:

Microscopy Course  2014  -  Lecture 16

kx 

ky 

y 

x 

ky 

kx 

19

Real space 
(Fourier Transformation) 

Frequency space 

ky 

kx high N.A.

Cut-off frequency!

2 N.A. / λ !

Image = superposed periodicities

Real space (xy) Frequency space (kx, ky)
FFT

Real space (𝑥,𝑦) Spatial Frequency Space (𝑘𝑥, 𝑘𝑦)



Pupil Function, Optical Transfer Function & Point Spread Function
The pupil function is the projection of the OTFA onto the lateral 

𝒌𝒙, 𝒌𝒚 plane:
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Wave vector

Pupil function: 

magnitude

phase

pupil OTF

Intensity PSF vs Pupil function:
• 2D, less prone to artefacts and noise
• Compact and modifiable description of a 3D widefield fluorescence microscope

• Measured by 
interferometric methods

• Inferred by phase 
retrieval algorithms



Gerchberg-Saxton Algorithm
• The most popular class of phase-retrieval methods 
• Recovering a complex image from magnitude measurements at two different planes – imaging plane and 

Fourier plane



Error criterion

A

B C

D

Gerchberg-Saxton Algorithm

Gerchberg–Saxton Algorithm(Source, Target, Retrieved_Phase) 

A = IFT(Target) 

while error criterion is not satisfied 

B = Amplitude(Source) * exp(i*Phase(A)) 

C = FT(B) 

D = Amplitude(Target) * exp(i*Phase(C)) 

A = IFT(D) 

end 

Retrieved_Phase = Phase(A) 

Let:

• A, B, C & D: complex planes with the same 

dimension as Target and Source Amplitude 

• Amplitude-extracting function: e.g. for complex 

z = x + iy, amplitude(z) = sqrt(x·x + y·y) for 

real x, amplitude(x) = |x| 

• Phase-extracting function: e.g. phase(z) = 

arctan(y/x) 

Inputs Output



A. Collect a series of defocus images (sections) of a sub-resolution point source
B. Start a guess of the pupil function; the intensity is simply set to unity over the 

support defined by the objective lens NA and to zero elsewhere. 
C. Apply defocus to the pupil function to create each PSF section by multiplying it 

with 𝑒+𝑖𝑘𝑧 𝑘𝑥,𝑘𝑦 𝑧 (i.e. the spherical phase)
D. Fourier transform the defocused-adjusted pupils to produce sections of the 

complex amplitude 3D PSF. The magnitudes of these calculated PSF sections 
are then replaced by the square root of the corresponding sections of the 
measured intensity data, while their phase values are left unchanged.

Phase-retrieved pupil functions in widefield fluorescence microscopy



E. These magnitude-corrected PSF sections are Fourier transformed back, and the 
defocus of each is readjusted back to zero by multiplying by the inverse defocus 

function 𝑒−𝑖𝑘𝑧 𝑘𝑥,𝑘𝑦 𝑧

F. These modified pupil functions are averaged to produce a single pupil function 
estimate

G. The NA limit constraint is then imposed to remove spatial frequency values 
outside of the pupil limit. A smoothing filter to suppress noise may optionally 
be applied.

H. This new pupil function estimate forms the starting pupil for the next iteration.
I. After a stopping criterion has been reached, the final pupil function estimate is 

output.

Phase-retrieved pupil functions in widefield fluorescence microscopy



Practical considerations:

• It is possible to estimate the unknown phase information because of the 
redundancy provided by the multiple focus levels in the measured PSF and 
because of a priori knowledge of wavelength and NA, which place geometric 
constraints on the pupil function. 

• Unlike in the original Gerchberg–Saxton algorithm, usually we allow the pupil 
function’s magnitude to vary over the aperture, as one cannot generally assume 
that the pupil function’s magnitude is constant over the pupil for high-NA 
systems.

• Alternatively, the pupil magnitude can be measured and used as an initial guess 
or fixed. Finally, the pupil magnitude may be fixed to unity (as in the GS 
algorithm) or modeled. 

Phase-retrieved pupil functions in widefield fluorescence microscopy



Practical considerations:

• Smoothing constraints may be applied on the phase and/or the magnitude of the 
pupil function. Robustness against ‘dust-related’ features.

• Conservation of energy between the intensity PSF and the pupil plane magnitude 
(remember the normalization of FFT)

• Assumptions made: bead size, vectorial nature of light, index mismatch, 
wavefront compression. See Hanser et al. Journal of microscopy (2004)

Phase-retrieved pupil functions in widefield fluorescence microscopy



Zernike Polynomials and Optical Aberrations

Pupil phase: PSF magnitude: 



Zernike Polynomials and Optical Aberrations

• reduces the optical aberration function to a few coefficients 

• removes fine-scale noise 
• provides meaningful information about the optical system



Zernike Polynomials and Optical Aberrations
𝒁𝒏
𝒎

Radial degree (𝒏) Azimuthal degree (𝒎) 𝒁𝒋 Classical name

𝑍0
0 0 0 1 Piston

𝑍1
−1 1 -1 2𝜌 sin𝜃 Tilt (vertical tilt)

𝑍1
1 1 1 2𝜌 cos 𝜃 Tip (horizontal tilt)

𝑍2
−2

2 -2 6𝜌2 sin2𝜃
Oblique 
astigmatism

𝑍2
0 2 0 3 2𝜌2 − 1 Defocus

𝑍2
2

2 2 6𝜌2 cos 2𝜃
Vertical 
astigmatism

𝑍3
−3 3 -3 8𝜌3 sin3𝜃 Vertical trefoil

𝑍3
−1 3 -1 8 3𝜌3 − 2𝜌 sin𝜃 Vertical coma

𝑍3
1 3 1 8 3𝜌3 − 2𝜌 cos 𝜃 Horizontal coma

𝑍3
3 3 3 8𝜌3 cos 3𝜃 Oblique trefoil

𝑍4
−4 4 -4 10𝜌4 sin4𝜃 Oblique quadrafoil

𝑍4
−2

4 -2 10 4𝜌4 − 3𝜌2 sin2𝜃
Oblique secondary 
astigmatism

𝑍4
0 4 0 5 6𝜌4 − 6𝜌2 + 1 Primary spherical

𝑍4
2

4 2 10 4𝜌4 − 3𝜌2 sin2𝜃
Vertical secondary 
astigmatism

𝑍4
4 4 4 10𝜌4 cos 4𝜃 Vertical quadrafoil

න
0

2𝜋

න
0

1

𝑍𝑗
2𝜌𝑑𝜌𝑑𝜃 = 𝜋

Normalized such that:



Practical application of phase retrieval on PSF engineering and 
aberration correctionexperimentally observed images while minimizing the number of coefficients in order to keep 

the estimation problem tractable. 

 

Fig. 1. (a) Schematic of the phase retrieval algorithm. A map of the phase mask pattern is used 
to produce the theoretical model, and a set of experimental images of the PSF is used to 
perform the MLE step. The estimation procedure returns a phase aberration term, which is 
added to the original phase mask pattern to produce the overall pupil function. In all cases, 
only the phase portion of the field is shown. (b) Schematic of the emission path of the 
microscope. Fluorescence collected from the sample by the objective is focused by a tube lens 
onto the intermediate image plane and relayed by a pair of 4f lenses onto the final image plane, 
where the camera is placed. The phase mask is placed in the Fourier plane, located half way 
between the two 4f lenses. 

3. Phase retrieval procedure 

In order to determine the coefficients of the Zernike polynomials, we use a phase retrieval 
method based on MLE [Fig. 1(a)]. This is an estimation technique which determines the 
parameters of a statistical model based on a set of experimental observations and an 
assumption about the noise model that underlies those observations [33]. In the context of the 
phase retrieval procedure considered here, the parameters to be estimated are the coefficients 
of the Zernike polynomials in the phase aberration term in Eq. (7), the experimental 
observations are images of the tetrapod PSF from a point emitter acquired at various defocus 
values as described in Section 5, and the noise in each pixel is assumed to be dominated by 
Poisson shot noise due to photon arrival statistics in a constant background. 

When the data is acquired using the electron multiplication feature of an EMCCD camera, 
the excess noise produced by the multiplication process should also be taken into account. For 
modern cameras, the excess noise has the effect of reducing the quantum efficiency of the 
camera by a factor of two [34], which we model by dividing the observed photon counts by 
two prior to beginning the analysis and treating the resulting image as obeying Poisson noise 
statistics. This is an approximation of more detailed EMCCD noise models, which account 
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experimentally observed images while minimizing the number of coefficients in order to keep 
the estimation problem tractable. 

 

Fig. 1. (a) Schematic of the phase retrieval algorithm. A map of the phase mask pattern is used 
to produce the theoretical model, and a set of experimental images of the PSF is used to 
perform the MLE step. The estimation procedure returns a phase aberration term, which is 
added to the original phase mask pattern to produce the overall pupil function. In all cases, 
only the phase portion of the field is shown. (b) Schematic of the emission path of the 
microscope. Fluorescence collected from the sample by the objective is focused by a tube lens 
onto the intermediate image plane and relayed by a pair of 4f lenses onto the final image plane, 
where the camera is placed. The phase mask is placed in the Fourier plane, located half way 
between the two 4f lenses. 

3. Phase retrieval procedure 

In order to determine the coefficients of the Zernike polynomials, we use a phase retrieval 
method based on MLE [Fig. 1(a)]. This is an estimation technique which determines the 
parameters of a statistical model based on a set of experimental observations and an 
assumption about the noise model that underlies those observations [33]. In the context of the 
phase retrieval procedure considered here, the parameters to be estimated are the coefficients 
of the Zernike polynomials in the phase aberration term in Eq. (7), the experimental 
observations are images of the tetrapod PSF from a point emitter acquired at various defocus 
values as described in Section 5, and the noise in each pixel is assumed to be dominated by 
Poisson shot noise due to photon arrival statistics in a constant background. 

When the data is acquired using the electron multiplication feature of an EMCCD camera, 
the excess noise produced by the multiplication process should also be taken into account. For 
modern cameras, the excess noise has the effect of reducing the quantum efficiency of the 
camera by a factor of two [34], which we model by dividing the observed photon counts by 
two prior to beginning the analysis and treating the resulting image as obeying Poisson noise 
statistics. This is an approximation of more detailed EMCCD noise models, which account 
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Depth encoding PSF

Nonlinear CS recon.

Single-shot 3D

1.3M pixel 100M voxels

“DiffuserCam” setup

Antipa et al. Optica 5, 1-9 (2018)

What? How?!



Antipa et al. Optica 5, 1-9 (2018)

480x320x128 voxels reconstructed in ~3 mins

Experimental 3D reconstruction from a snapshot



Outline

►Depth-encoding PSF

►Nonlinear CS rec.

►Resolution analysis

►Experimental results and extensions



Outline

Depth-encoding PSF

►Nonlinear CS rec.

►Resolution analysis

►Experimental results and extensions



• Standard microscope PSF have depth ambiguity and signal is lost

PSF recorded 
in image plane

Point source 
moving in z

Phase mask

Fourier plane

z y
x

y

x

Phase mask
in Fourier plane

Tetrapod PSF

Point source 
moving in z

z y
x

y

x

• Main idea is to encode depth into the PSF shape efficiently

Optimal for single emitter 
3D position estimation.

y

x

Standard PSF

2 μm

Shechtman et al., Phys. Rev. Letters (2014) 

Extending a microscope to 3D: reminder



Diffuser-induced caustics PSF

https://en.wikipedia.org/wiki/Caustic_(optics)

Glass of water

Caustics produced by the surface of waterGlass of wine



Diffuser-induced caustics PSF

Antipa et al. Optica 5, 1-9 (2018)

• Main idea is to encode 
depth into the PSF 
shape

• Question: What kind of 
assumptions do we 
need on the PSF to 
make the inverse 
problem manageable?

• Answer: we really like 
convolution models..



Assumption 1: Shift-
Invariant in xy.

Assumption 2: Only 
Scaling in z.

Hyperfocal plane 
(35.3 mm)

Minimal allowable dist. 
(9.9 mm)

Diffuser-induced caustics PSF



Shift-invariance in xy
Holds for reasonable FOV

Validity of the assumptions: Shift-invariance



Validity of the assumptions: Shift-invariance

• PSFs at 0 and 15 degress
are approximately 
shifted versions of the 
same pattern.

• PSFs at 30 has subtle 
differences.

• Inner products between 
the on-axis PSF and 
registered off-axis PSF 
can quantify the 
assumption.



Validity of the assumptions: Scaling with depth

• Almost but not exactly ..How can we fix it?

• Answer: On-axis calibration!



Outline

Depth-encoding PSF

Nonlinear CS rec.

►Resolution analysis

►Experimental results and extensions



NoiseMeasured 
2D image

Optical measurement 
operator (forward model)

Unknown 
3D volume

Compressed sensing: nonlinear recovery



Low 
correlation

Compressed sensing: nonlinear recovery



Low 
correlation

Is this satisfied for 
the caustics PSF?

Compressed sensing: nonlinear recovery



Caustics are approximately not correlated laterally/axially

Caustics at a given depth are 
unique over shifting

Caustics from two different depths are 
not similar, even under translation



Caustics forward operator

Question: How can we handle this 
computationally for large volumes?



Convolutional implementation

Slice-wise
Correlation

Question: How can we implement 
this efficiently?

Answer: Use 3D FFT!

(All of this is true up to 
some cropping operator)



Bouman et. Al [2013]

In the paper:

Optimization trick

• Variable splitting:

• Solve with Half Quadratic Splitting (or Alternating Direction Method of Multipliers)



Outline

Depth-encoding PSF

Nonlinear CS rec.

Resolution analysis

►Experimental results and extensions



Two-point distinguishability

• Unlike typical cameras, in 
computational cameras 
performance depend on 
scene complexity.

• Two-point distinguishability 
is not a good metric.

• Non-isotropic resolution

worse 
resolution!



Local condition number

• Main idea: Define resolution through invertibility of the forward model H

• Oracle support assumption:



Local condition number

• Higher condition number = lower resolution



Outline

Depth-encoding PSF

Nonlinear CS rec.

Resolution analysis

Experimental results and extensions



Antipa et al. Optica 5, 1-9 (2018)

480x320x128 voxels reconstructed in ~3 mins

Experimental 3D reconstruction from a snapshot



Antipa et al. Optica 5, 1-9 (2018)

640x640x50 voxels reconstructed in ~3 mins

Experimental 3D reconstruction from a snapshot



Liberti III et al., J. Neural Eng. 14 (2017)https://github.com/gardner-lab/FinchScope

What is a Miniscope? http://miniscope.org/



3D rec.

Exp. snapshot

Freely moving tardigrades

Yanny et al. Light: Science & Applications (2020) 9:171

SEM image
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Peng et al., ACM SIGGRAPH (2020) 

Computational Imaging = Co-design of acquisition + computation



Peng et al., ACM SIGGRAPH (2020) 

Computational Imaging = Co-design of acquisition + computation

Tutorial 5+6, 
and HW1



Deep Computational Cameras = “Deep Optics” = “Neural Sensors”

Scene
“Optics”

• Object localization
• Depth estimation
• Color recovery
• Object recognition
• Etc.

Task
“Algorithm”

Deep neural network

Task-driven loss function

End-to-End Optimization

Differentiable



Outline

►Autoencoder interpretation

►Learning dense 3D imaging

►Generality to higher level tasks

►Multi-measurement systems

►Beyond microscopy



Outline

Autoencoder interpretation

►Learning dense 3D imaging

►Generality to higher level tasks

►Multi-measurement systems

►Beyond microscopy



Autoencoders: Background

• Unsupervised approach for learning a lower-dimensional feature 
representation from unlabeled training data

• Train such that features can be used to reconstruct original data

Encoder Decoder



Autoencoders: Background

• Unsupervised approach for learning a lower-dimensional feature 
representation from unlabeled training data

Encoder Decoder



Autoencoders: Background

Example from Stanford CS231n

• Learned lower-dimensional representation can be used for classification

Encoder Decoder
Use to train a classifier with 
limited training data:
Cat, Dog, Truck, Plane, etc.



Autoencoder interpretation: Physical encoder – Electronic decoder

Wetzstein et al. Nature 588, p. 39–47 (2020)



Autoencoder interpretation: Physical encoder – Electronic decoder

Wetzstein et al. Nature 588, p. 39–47 (2020)



Autoencoder interpretation: Physical encoder – Electronic decoder

Wetzstein et al. Nature 588, p. 39–47 (2020)



Autoencoder interpretation: Physical encoder – Electronic decoder

Wetzstein et al. Nature 588, p. 39–47 (2020)



Autoencoder interpretation: Physical encoder – Electronic decoder

• For example, we can optimize the “Freeform” lens for depth imaging

2D image



Analogy to DiffuserCam

Antipa et al. Optica 5, 1-9 (2018)

Bottleneck sensor

Physical Encoder Elect. decoder



Main difference compared to DiffuserCam

Antipa et al. Optica 5, 1-9 (2018)

Low 
correlation

Optical measurement 
operator (forward model)

Chosen such that

Question 1: How should we design the physical element if the 
algorithm is not based on compressed sensing theory?

Question 2: How can we incorporate complex 
prior knowledge on the data?

Question 3: Can this concept be extended to 
higher level tasks like classification? Answer: Deep Optics!



Deep Optics: Training

Wetzstein et al. Nature 588, p. 39–47 (2020)
Gradients

Element(s) controlling 
image acquisition



Deep Optics: Inference

Wetzstein et al. Nature 588, p. 39–47 (2020)

Fabricate or 
implement lens 
or other physical 
components, and 
run network on 
measurements

LC-SLM



Outline

Autoencoder interpretation

Learning dense 3D imaging

►Generality to higher level tasks

►Multi-measurement systems

►Beyond microscopy



• Standard microscope PSF have depth ambiguity and signal is lost

PSF recorded 
in image plane

Point source 
moving in z

Phase mask

Fourier plane

z y
x

y

x

Phase mask
in Fourier plane

Tetrapod PSF

Point source 
moving in z

z y
x

y

x

• Main idea is to encode depth into the PSF shape efficiently

Optimal for single emitter 
3D position estimation.

y

x

Standard PSF

2 μm

Shechtman et al., Phys. Rev. Letters (2014) 

Extending a microscope to 3D: reminder



No PM
Standard

5 μm

3D PSF

??

Sleep and cancer research require 3D tracking 
of telomeres in the nucleus of live cells



3 𝜇𝑚

Answer: Let the net design it via backpropagation!

Tetrapod phase maskOptimal phase mask

What is the optimal PSF for high density imaging?

Nehme et al., Nature Methods (2020) 



3 𝜇𝑚

2 μm

What is the optimal PSF for high density imaging?



3 𝜇𝑚

Put simply: The net designs its favorite PSF in order to perform best at 
decoding high density of emitters, thereby jointly optimizing the optics 
(encoding) and the localization algorithm (decoding)!

3 μm

What is the optimal PSF for high density imaging?

Nehme et al., Nature Methods (2020) 



• Resembles familiar PSFs at different axial ranges

z y
x

y

x

Standard PSFLearned
Phase mask

Phase mask
in Fourier plane

Learned PSF

Point source 
moving in z

z y
x

y

x

y

x

Standard PSFTetrapod PSF

y

x

2 μm

Learned phase mask and PSF

Nehme et al., Nature Methods (2020) 



True 
Positive

False 
NegativeFalse 

Positive

Nehme et al., Nature Methods (2020) 

Tetrapod vs. Learned PSF



Tetrapod Learned

Does this come at a cost of precision?

Nehme et al., Nature Methods (2020) 

Tetrapod vs. Learned PSF



Nehme et al., Nature Methods (2020) 

Tetrapod vs. Learned PSF



Nehme et al., Nature Methods (2020) 

Live cell 3D tracking with the Learned PSF



Outline

Autoencoder interpretation

Learning dense 3D imaging

Generality to higher level tasks

►Multi-measurement systems

►Beyond microscopy



Peng et al., ACM SIGGRAPH (2020) 

How do computer vision pipelines work?

Objective: Solve CV problem on scene

What is this?



Peng et al., ACM SIGGRAPH (2020) 

How do computer vision pipelines work?



Peng et al., ACM SIGGRAPH (2020) 

How do computer vision pipelines work?



Peng et al., ACM SIGGRAPH (2020) 

How do computer vision pipelines work?



Peng et al., ACM SIGGRAPH (2020) 

How do computer vision pipelines work?



Peng et al., ACM SIGGRAPH (2020) 

How do computer vision pipelines work?



Peng et al., ACM SIGGRAPH (2020) 

How do computer vision pipelines work?



Peng et al., ACM SIGGRAPH (2020) 

Why not optimize sensors for classification?

The pipeline is differentiable

Loss function

Optimize the entire thing end-to-end for classification:
Optics, Bayer Pattern, Demosaicking, Deblurring, 
Denoising, Feature Extraction, Classifier…



Horstmeyer et al., arXiv (2017)

Optimizing microscopes for malaria classification

Optimized LED array 
for classification



R. Horstmeyer et al., arXiv (2017)

Optimizing microscopes for malaria classification



R. Horstmeyer et al., arXiv (2017)

Optimizing microscopes for malaria classification



Hershko et al., Optics Express (2019) 

Similar ideas can be used for single-emitter color classification



Hershko et al., Optics Express (2019) 

Similar ideas can be used for single-emitter color classification



Outline

Autoencoder interpretation

Learning dense 3D imaging

Generality to higher level tasks

Multi-measurement systems

►Beyond microscopy



Cameras are everywhere!

Question 3: How far can we push the concept of end-to-end design before 
the optimization landscape becomes prohibitive?

Question 1: Can we design cameras with multiple acquisitions to produce 
the final result?

Question 2: Can we design multiple cameras simultaneously?

Yes!

We don’t know!

Yes!



Learning multiple LED patterns for Fourier Ptychography

Kellman et al., IEEE Trans. on Comp. Imaging (2019)



Learning multiple LED patterns for Fourier Ptychography

Kellman et al., IEEE Trans. on Comp. Imaging (2019)



No PM

Nehme et al., arXiv (2020) 

Can we go beyond a single camera?



Encoding 1

Encoding 2 Physical simulation layers

Standard 
microscope

Neural
network

Loss functionGradients

Repeat until 
convergence

Design both cameras via backpropagation through physics

Nehme et al., arXiv (2020) 



Fourier plane Image plane

Complementary 
Patterns

0

0.6

0

0.6

Nehme et al., arXiv (2020) 



Fourier plane Image plane

0

0.6

0

0.6

Nehme et al., arXiv (2020) 



Jointly optimized “encoder-decoder”

Nehme et al., arXiv (2020) 



Image plane

Fourier plane

Camera 1 Camera 2

Point Source 

0

0.33

Nehme et al., arXiv (2020) 



Complementary lobes

Composite

Image plane

Fourier plane

Camera 1 Camera 2

0

0.33

Nehme et al., arXiv (2020) 



State-of-the-art results in detection

Nehme et al., arXiv (2020) 



State-of-the-art results in precision

Nehme et al., arXiv (2020) 



Nehme et al., arXiv (2020) 

Experimental implementation with 2 LC-SLMs



Estimated
Nuclear envelope

Localized
Telomeres Live

Tracking
Captured 
Images

Exp. 1 Exp. 2

Nehme et al., arXiv (2020) 

Live cancer cells experiment



Exp. 1 Exp. 2

Nehme et al., arXiv (2020) 

Live 3D tracking of telomeres diffusing 
in a single cell nucleus



Outline

Autoencoder interpretation

Learning dense 3D imaging

Generality to higher level tasks

Multi-measurement systems

Beyond microscopy



Optimizing phase masks for domain-specific cameras

Sitzmann et al., SIGGRAPH (2018) 



Optimizing phase masks for domain-specific cameras

Sitzmann et al., SIGGRAPH (2018) 



Optimizing phase masks for domain-specific cameras

Sitzmann et al., SIGGRAPH (2018) 



Optimizing phase masks for domain-specific cameras

Sitzmann et al., SIGGRAPH (2018) 



Optimizing phase masks for domain-specific cameras

Sitzmann et al., SIGGRAPH (2018) 



Optimizing phase masks for domain-specific cameras

Sitzmann et al., SIGGRAPH (2018) 



Optimizing phase masks for domain-specific cameras

Sitzmann et al., SIGGRAPH (2018) 



Optimizing phase masks for domain-specific cameras

Sitzmann et al., SIGGRAPH (2018) 



Optimizing phase masks for domain-specific cameras

Sitzmann et al., SIGGRAPH (2018) 



Optimizing phase masks for domain-specific cameras

Sitzmann et al., SIGGRAPH (2018) 



Optimizing phase masks for domain-specific cameras

Sitzmann et al., SIGGRAPH (2018) 



Optimizing phase masks for domain-specific cameras

Sitzmann et al., SIGGRAPH (2018) 



Extended Depth of Field (EDOF) imaging

Sitzmann et al., SIGGRAPH (2018) 



Extended Depth of Field (EDOF) imaging

Sitzmann et al., SIGGRAPH (2018) 



Monocular depth estimation and 3D object detection

Chang et al., ICCV (2019) 



Monocular depth estimation and 3D object detection

Chang et al., ICCV (2019) 



Monocular depth estimation and 3D object detection

Chang et al., ICCV (2019) 



High-dynamic range imaging

Meltzer et al., CVPR (2020) 



High-dynamic range imaging

Meltzer et al., CVPR (2020) 

Sensor model 
includes clipping



High-dynamic range imaging

Meltzer et al., CVPR (2020) 



Hyper-spectral and depth imaging

Baek et al., SIGGRAPH (2020) 



Hyper-spectral and depth imaging

Baek et al., SIGGRAPH (2020) 

Encoding more than a single physical quantity: Wavelength + Depth.



Hyper-spectral and depth imaging

Baek et al., SIGGRAPH (2020) 

GT from simulation..



Hyper-spectral and depth imaging

Baek et al., SIGGRAPH (2020) 

Real captures didn’t work out as great..

Can we go beyond optical imaging? 
Combine with compressed sensing?



Learning video compressive sensing

Iliadis et al., Digital Signal Processing (2020) 

Optimized Parameters!



Learning video compressive sensing

Iliadis et al., Digital Signal Processing (2020) 



Learning video compressive sensing

Martel et al., ICCP (2020) 

Similar idea only not binary and combines dynamic range considerations



Learning video compressive sensing

Martel et al., ICCP (2020) 
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4 measure. 4 measure. 4 measure. 1 measure.

64 frames 64 frames 64 frames 16 frames



If you are interested in such techniques

ICCP 2021 is taking place at the Technion! (Assuming COVID allows it…Otherwise Zoom)
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