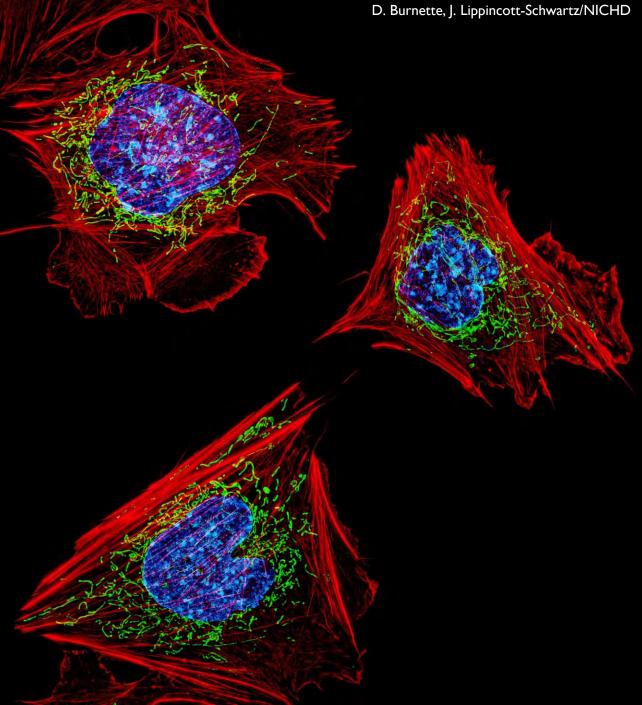


Department of Biomedical Engineering, Technion Computational optical imaging 336547

Tutorial 1 – Introduction to ImageJ

Elias Nehme & Yoav Shechtman

27 October 2020



Fiji is Just ImageJ

ImageJ – an open source Java-based image processing program.

Fiji – an image processing package based on **ImageJ**. Includes many useful plugins contributed by the community.

Fiji is a "batteries-included" distribution of ImageJ which facilitate scientific image analysis (life and material sciences).

Strengths of ImageJ

- Intuitive and easy to use.
- Can handle all **image formats**.
- Easy to **automate**.
- Bundles together many plugins into one installation.
- Automatically manages plugins dependencies and updating.
- Its plugin structure gives the flexibility to adapt it for **different needs**.

Plugins:

- https://imagej.net/Category:Plugins
- http://imagej.nih.gov/ij/plugins
- http://imagej.nih.gov/ij/plugins/mbf
- <u>https://imagej.net/Cookbook</u>
- And dozens of other lists and collections

Getting to know ImageJ

First steps

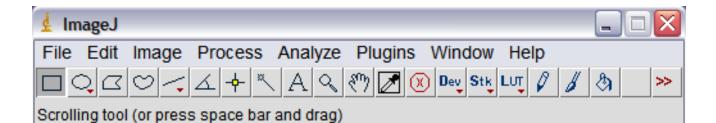
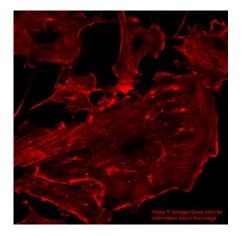
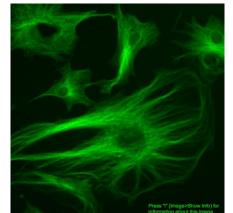
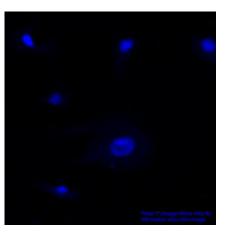


Image Processing Basics



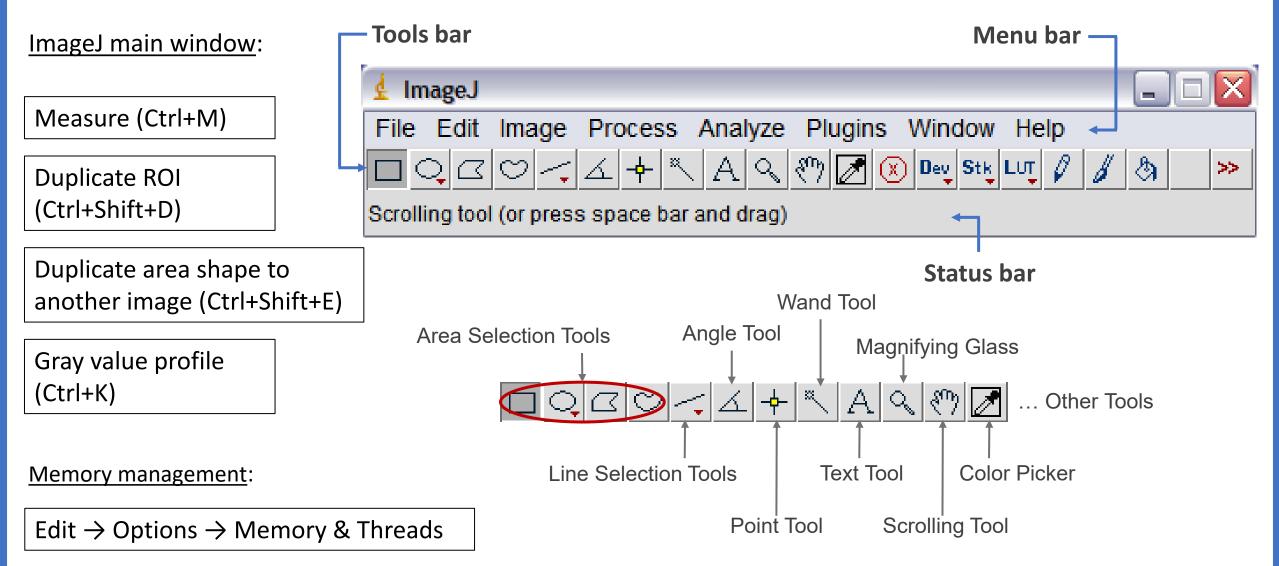




Advanced Tools - Plugins

First steps

Download: https://imagej.net/Fiji/Downloads

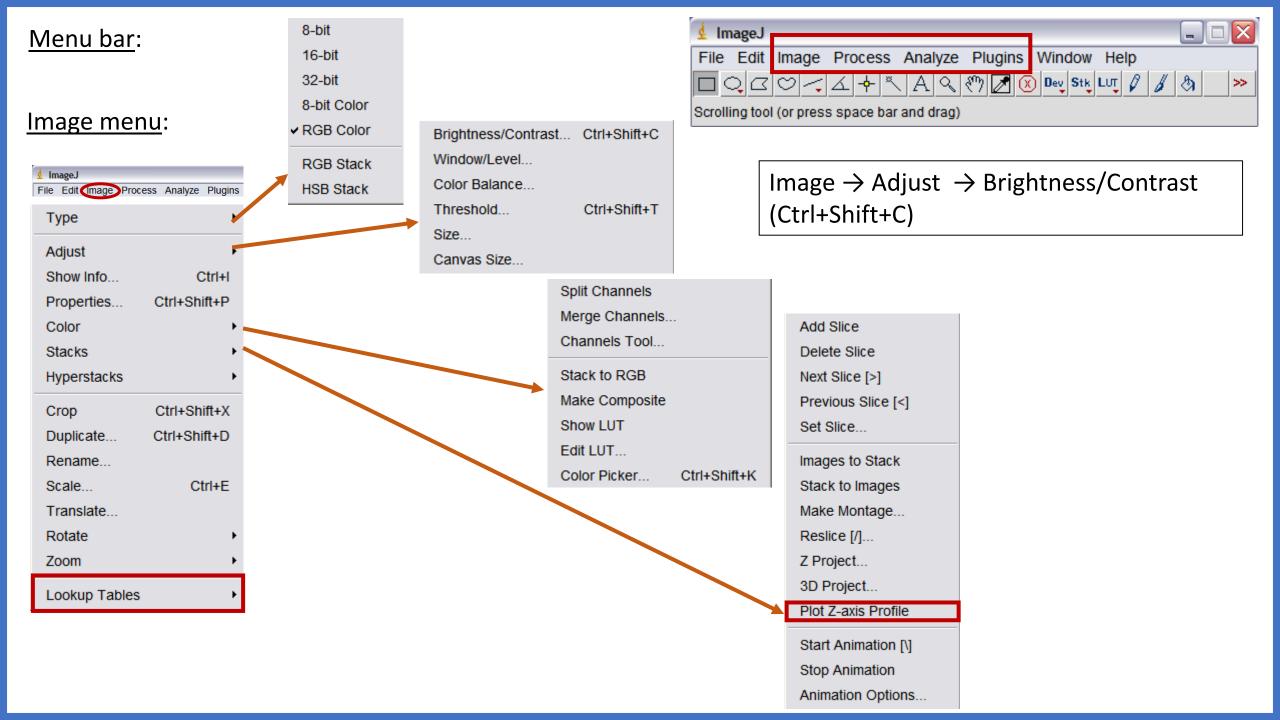


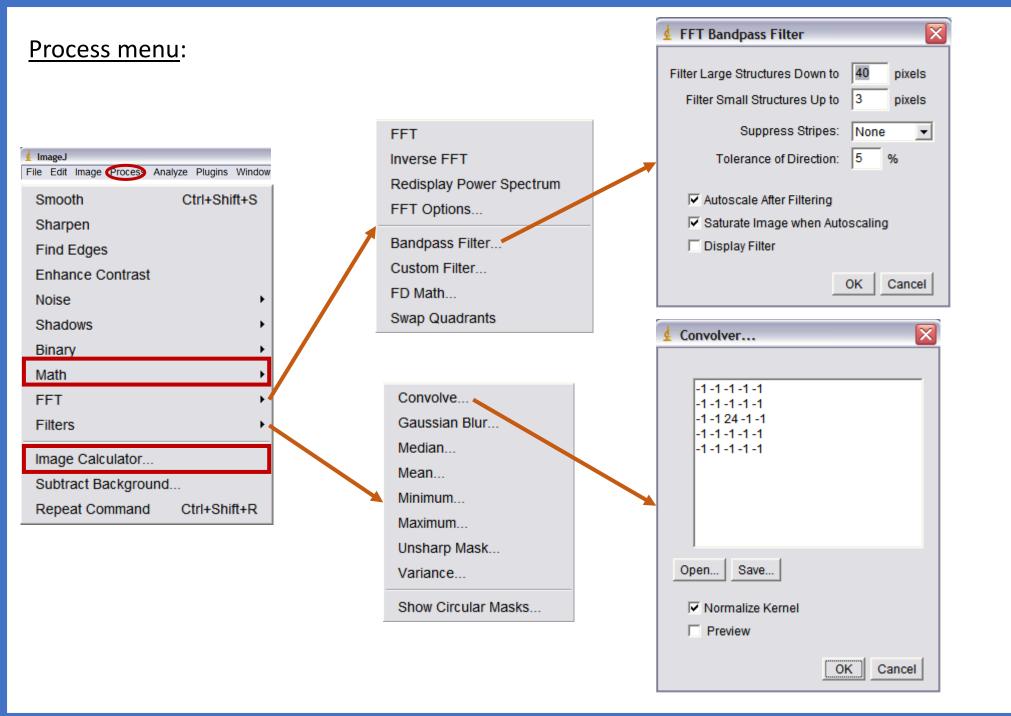
Opening data:

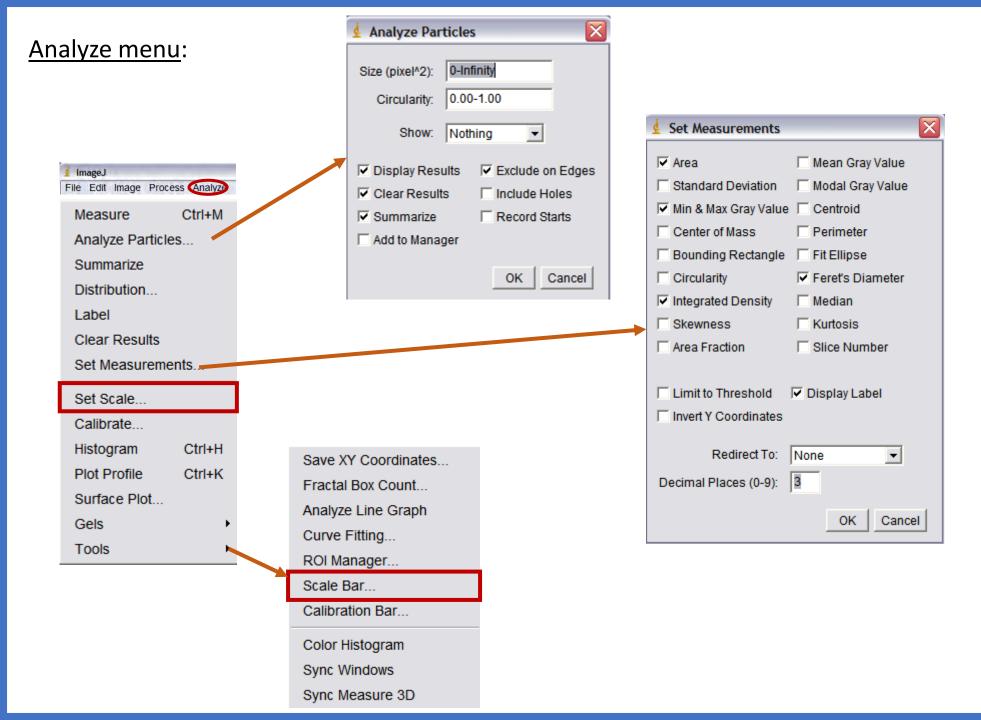
Drag & Drop | File \rightarrow Open

File \rightarrow Import \rightarrow Bio-formats

(* *		E	io-Formats In	nport Options			
itack viewing		Metadata	viewing		Information		
/iew stack with:	Hyperstack	🖸 🗹 Displa	ay metadata		Display metadata - Reads metadata that may be contained within the file format and displays it.		
tack order:	XYCZT		ay OME-XML ay ROIs rt Mode:	metadata ROI manager 🛛 C	You can save it as a text file or copy it from the File and Edit menus specific to the "Original Metadata" window. Readability depends upon the manner in which metadata is formatted in the data source. The metadata can also be displayed by pressing "i" (Image > Show Info) when the imported image is active.		
Dataset organiza	tion	Memory	nanagemen	t	imported inhage is active.		
Group files wi	th similar names	Use v	rtual stack				
Open files ind	lividually	Specif	y range for e	ach series			
Swap dimensi	Swap dimensions		Crop on import				
Open all serie	s						
Concatenate series when compatible		ble Split into	Split into separate windows				
Stitch tiles		Split o	hannels				
olor options		Split f	ocal planes				
Color mode:	Default	C Split t	imepoints				
🗹 Autoscale							
					Cancel OK		







Plugins menu:

🛓 ImageJ File Edit Image Process Analyze Qugins Macros Shortcuts Utilities New Compile and Run... AVI Reader AVI Writer AcquireQCam Addmacro ۲ Background Correction Colocalization Colocalization Finder Color Demos Depth Coded Stack Diffraction Limit PSF Diffraction PSF 3D Dispose All Windows Examples Extended Depth of Field

Filters Graphics IJUpdate

ImageJ 3D Viewer

Install	Ctrl+Shift+M
Run	
Edit	
Startup Macros.	
Record	
Pencil Tool Opti	ons
Paintbrush Tool	Options
Flood Fill Tool C	Options
Set Drawing Col	lor
About Startup M	lacros
Save As JPEG	. [j]
Save Inverted F	ITS
Control Panel	
ImageJ Properties	
List Shortcuts	
Threads	
Benchmark	
Reset	
Monitor Memory	
Search	
Capture Screen	Ctrl+Shift+G
Find Commands	. Ctrl+L
Update ImageJ	

Getting to know ImageJ

First steps

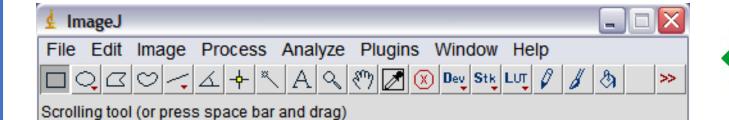
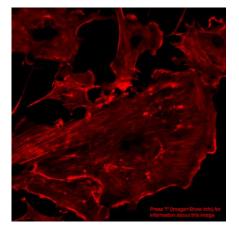
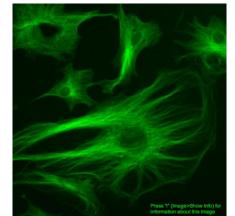
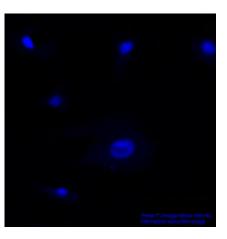


Image Processing Basics







Advanced Tools - Plugins

Image Processing Basics

The image histogram:

The histogram shows the number of pixels of each value, regardless of location.

Case 1:

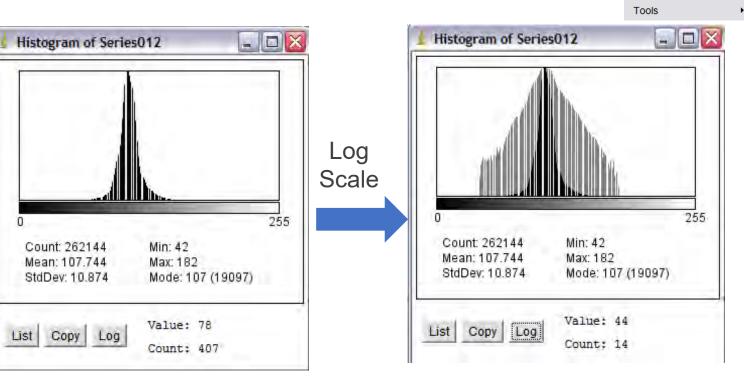


Image Process Analyze

Measure

Label Clear Results

Set Scale.

Calibrate.

Histogram

Plot Profile

Gels

Surface Plot.

Analyze Particles. Summarize Distribution...

Set Measurements.

Ctrl+M

Ctrl+H

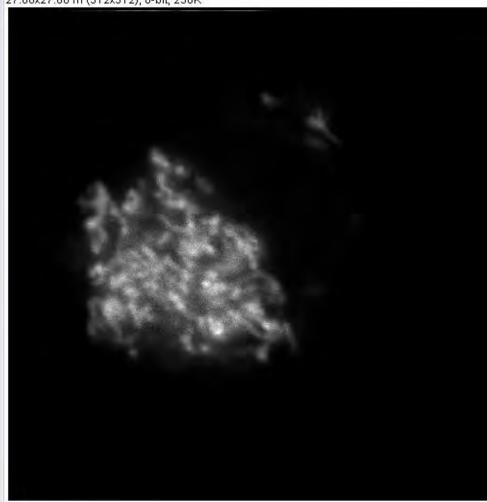
Ctrl+K

The log display allows for the visualization of **minor components**. Note that there are **unused pixel values**.

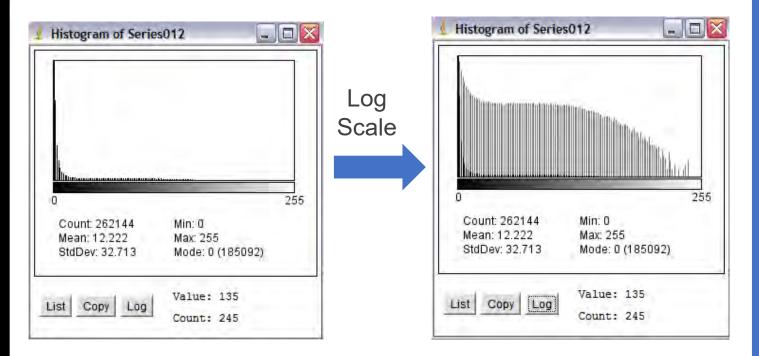
The image histogram:

Case 2:

Series012 Red-1.tif 27.88x27.88 m (512x512); 8-bit; 256K



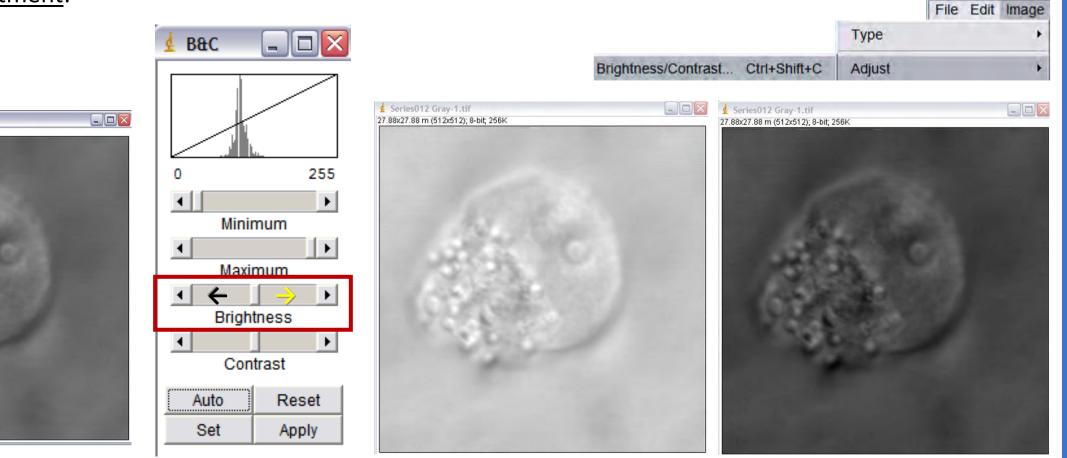
-][X



In this case, the log display indicates that **virtually all pixel values are used**, even though they are a **small percentage of the total**.

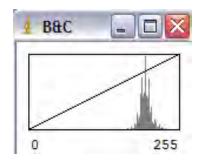
Brightness Adjustment:

Series012 Gray-1.tif 27.88x27.88 m (512x512); 8-bit; 256K



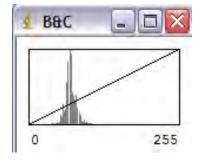
Adding a constant \rightarrow Brighter

The brightness adjustment essentially **adds or subtracts a constant to every pixel**, causing a shift in the histogram along the x axis, but **no change in the distribution**.

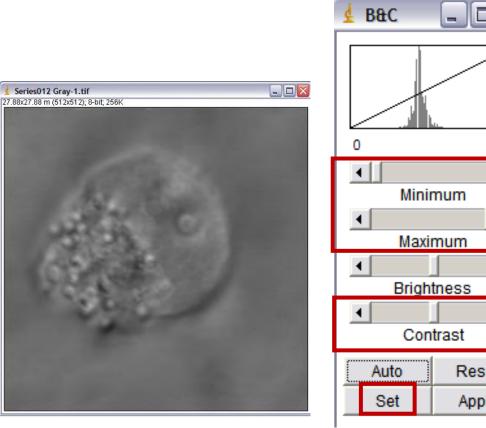


Subtracting a constant \rightarrow Darker

ImageJ



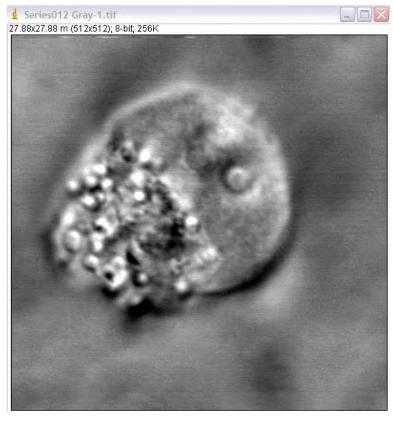
Contrast Enhancement:

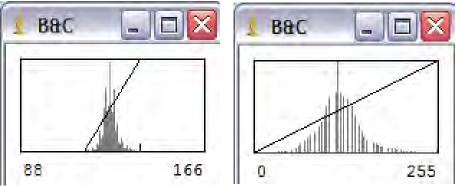


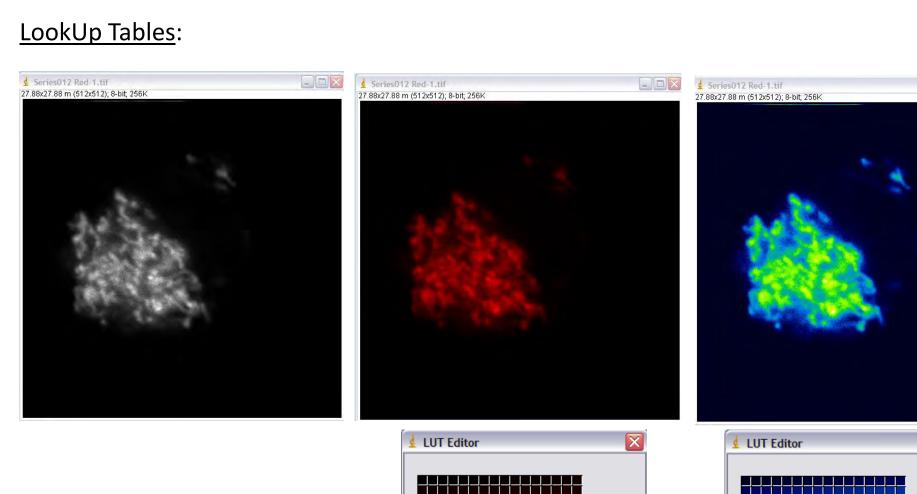
_ 0 255 Reset Apply

For contrast enhancement, a lower value, in this case, 88, is set at zero, and a higher value, 166, is set at 255.

The values of each of the pixels are adjusted proportionately. Note that because of the integer values, not all pixel values are used.







Open...

Save...

Set...

Invert...

Cancel

OK

Invert LUT Apply LUT Fire	File Edit Image
Grays Ice Spectrum 3-3-2 RGB	Type Adjust Show Info Ctrl+I Properties Ctrl+Shift+P
Red Green Blue	Color Stacks Hyperstacks
Cyan Magenta Yellow Red/Green	Crop Ctrl+Shift+X Duplicate Ctrl+Shift+D Rename Scale Ctrl+E
Blue Pale Blue_Hot Brown Cornflower	Translate Rotate Zoom Lookup Tables

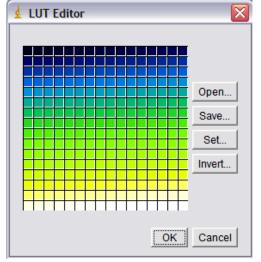
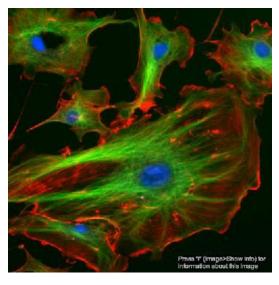


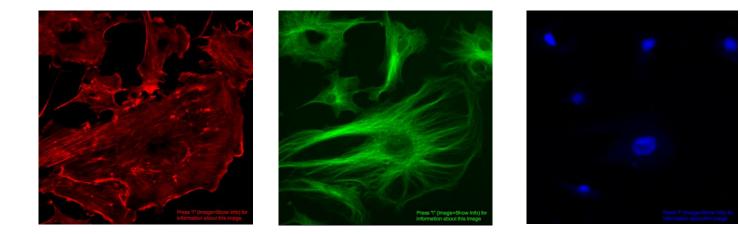
Image \rightarrow Color \rightarrow Edit LUT

Color channels:

The other way to treat color is to **assign a set of 3 values**, for Red, Green and Blue to each pixel. For common color images, each of the three colors is represented as an **8-bit value**.

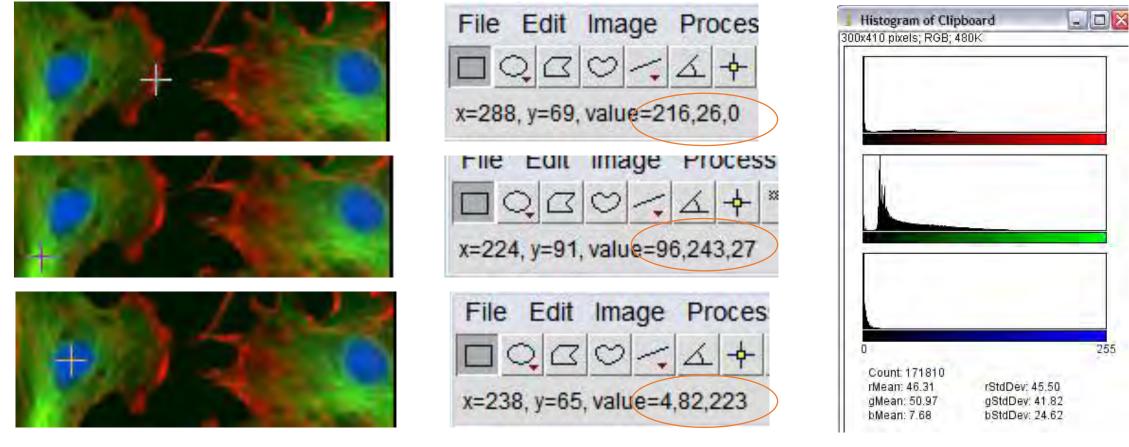


One can think of a color image as consisting of **three channels**, one for each of the primary colors.



Color channels:

As we move the cursor over different parts of the image, the color values appear in the status bar of the program.



A color histogram plugin is available

Getting to know ImageJ

First steps

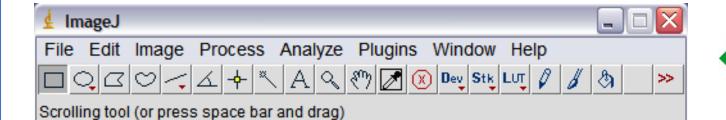
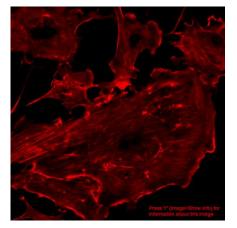
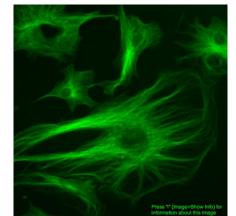
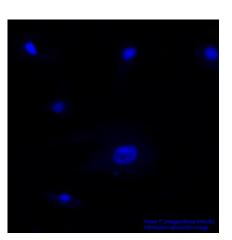


Image Processing Basics

Advanced Tools - Plugins







Advanced Tools - Plugins

BioVoxxel Toolbox:

Collection of plugins and macros to facilitate image processing and analysis methods

🗁 (Fiji Is Just) ImageJ

BioVoxxel Macros Menu

File Edit Image Process Analyze Plugins Window Help

Pre-processing

- Background filters
- Image filters

Feature Extraction

- Optimized thresholding **Post-processing**
- Binary operations

Analysis

- Speckle inspector
- Particle Analyzer
- Shape Descriptor Map
- Clustering Analysis

Extended Particle Analyzer	
Field-of-view measure correction	
Shape Descriptor Maps	1
Binary Feature Extractor	
Speckle Inspector	
Watershed Irregular Features	
EDM Binary Operations	
Auto Binary Masking	
Threshold Check	
Filter Check	
Flat-field correction	
Pseudo flat-field correction	
Median Background Subtraction	
Convoluted Background Subtrac	tion
Scaled Intensity Plots	
Stack Line Plots	
Gaussian weighted Median	
Difference of Gaussian	
Difference from Median	
Adaptive Filter	
Hyperstack Color Coding	
Neighbor Analysis	
2D Particle Distribution	
Cluster Indicator	
Particle Length (via Skeleton)	

- - X

About

binary operations and analysis tools

filter and threshold comparison

background and lighting correction

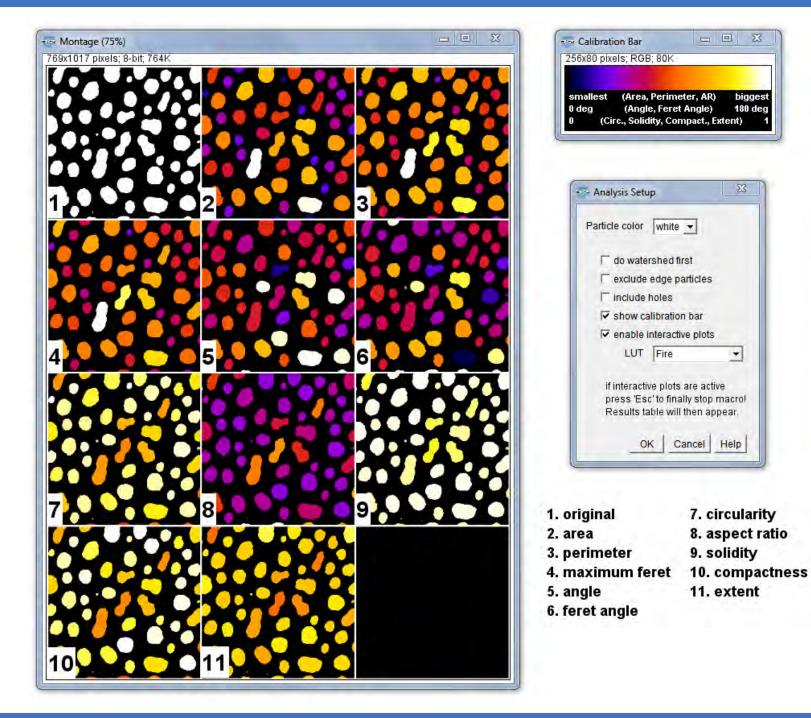
diverse line plots

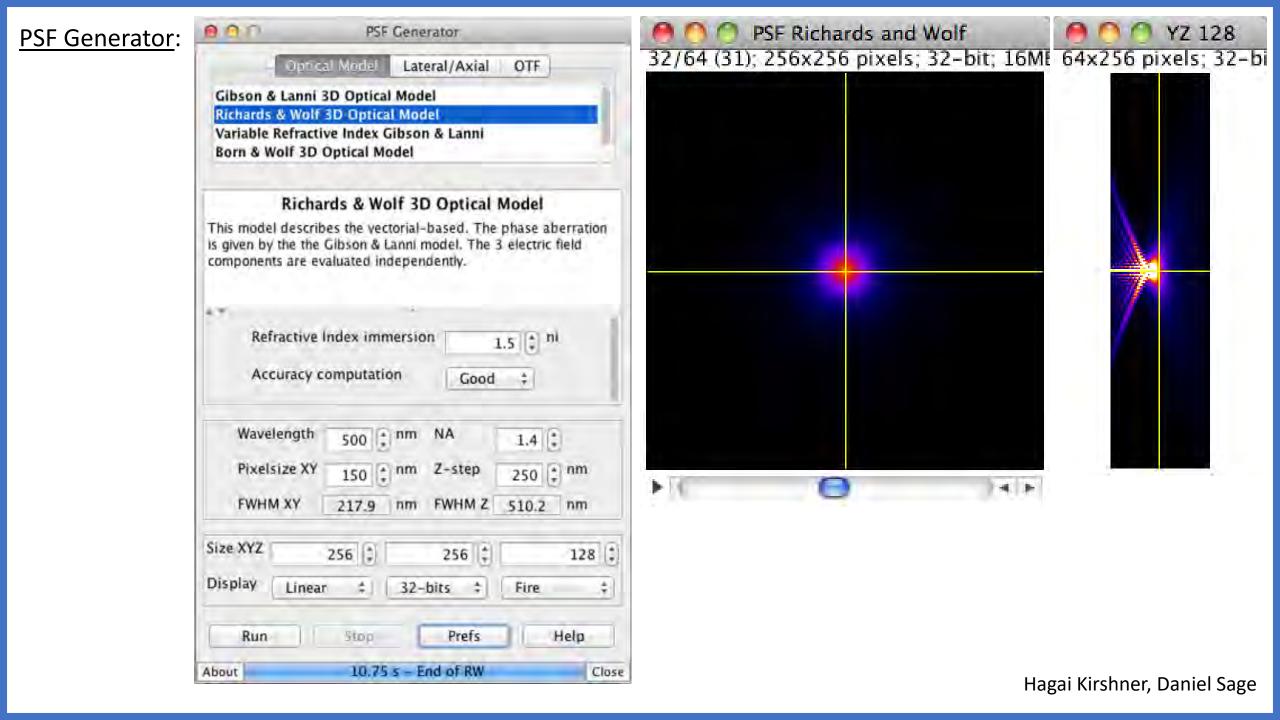
image filters

neighbour and cluster tools

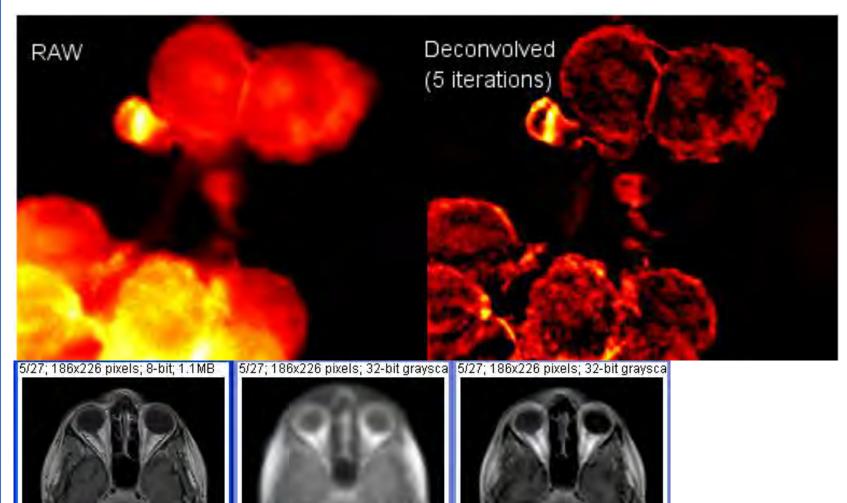
Jan Brocher, Thorsten Wagner

<u>BioVoxxel Toolbox – Shape Descriptors:</u>





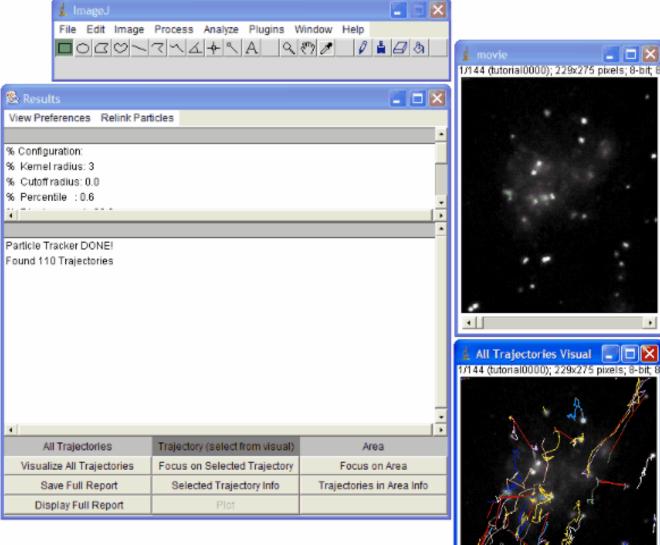
<u>Iterative Deconvolution 3D – Cookbook</u>:



*

Jan Brocher, Thorsten Wagner

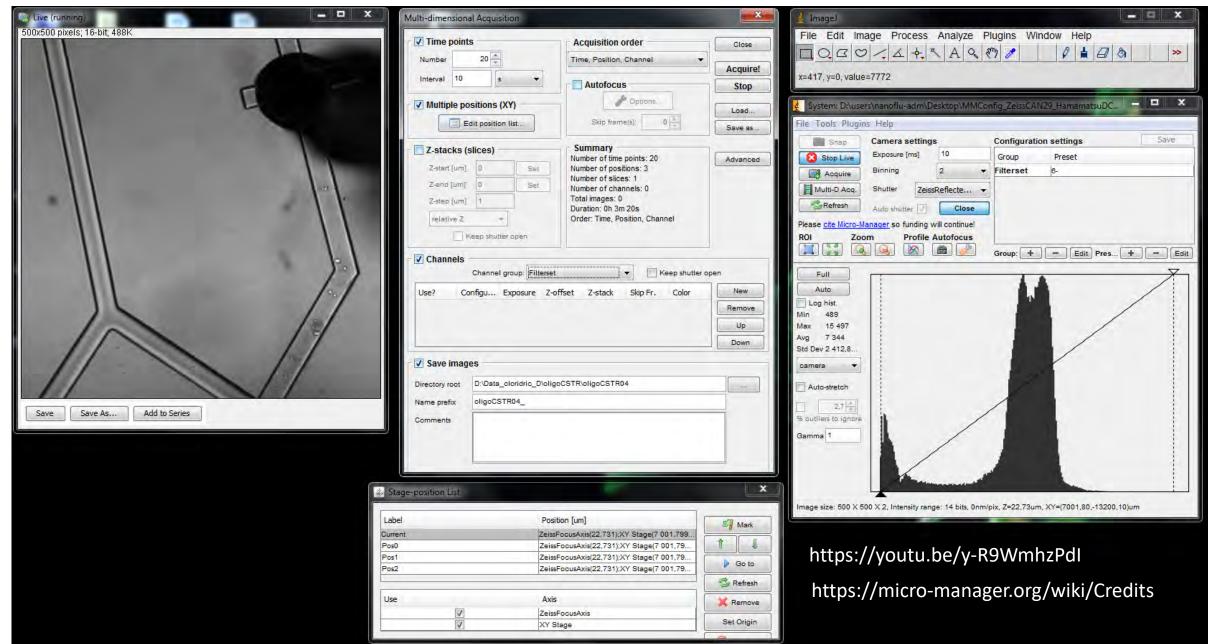
Particle Tracker:



1/144 (tutorial0000); 229x275 pixels; 8-bit; 8 🛓 All Trajectories Visual 🛛 🗖 🔀 1/144 (tutorial0000); 229x275 pixels; 8-bit, 8 1 . Filter Options

I. F. Sbalzarini and P. Koumoutsakos

Micro-Manager:



And much more:

Autocorrelation MRI t2 calculations Line Analyzer Image Correlator (image correlation) Particle Remover Circularity Modulation Transfer Function Specify ROI Specify Line Selection Comment Writer 16-bit Histogram Results and Text Draw line or point grids Moment Calculator **Batch Statistics** Cell Counter **Oval Profile Plot** Color Comparison Radial Profile Plot Microscope Scale MRI Analysis Calculator Sync Measure 3D Hough Circles Convex Hull, Circularity, Roundness Fractal Dimension and Lacunarity Measure And Label Colocalization Granulometry Texture Analysis Named Measurements

Cell Outliner Grid Cycloid Arc **RGB** Profiler Colocalization Finder Spectrum Extractor Contact Angle **RG2B** Colocalization Color Profiler Hull and Circle MR Urography Template Matching Extract IMT from ultrasound images ITCN (Image-based Tool for Counting Nuclei) Multi Cell Outliner FRETcalc - FRET by acceptor photobleaching JACoP (Just Another Colocalization Plugin) FRET and Colocalization Analyzer CASA (Computer Assisted Sperm Analyzer) Radial Profile Plot Extended Concentric Circles (non-destructive overlay) Azimuthal Average Slanted Edge Modulation Transfer Function Calculate 3D Noise FWHM (analyze photon detector pinhole images) SSIM index (calculate structural similarity index) Image Moments (image moments of n-th rank) MS_SSIM_index (multi-scale structural similarity index) Colony Counter (count colonies in agar plates) Levan (chromosome morphology) EXTRAX (electron diffraction intensity extraction) Fractal Surface Measurement

Real Convolver FFT LoG Filtering Background Subtraction and Normalization Contrast Enhancer **Background Correction** Byte Swapper Discrete Cosine Transform (DCT) FFT Filter FFTJ and DeconvolutionJ Unpack 12-bit Images De-interlace 2D Gaussian Filter Kalman Filter Dual-Energy Algorithm Anisotropic Diffusion (edge-preserving noise reduction) Grayscale Morphology Updated 2D Hybrid Median Filter **3D Hybrid Median Filter** Spectral Unmixing Haar Wavelet Filter and Adaptive Median Filter 'A trous' Wavelet Filter Kuwahara Filter Granulometric Filtering Windowed-Sinc Filter (low pass time series filter) Anisotropic Diffusion 2D (edge-preserving noise reduction) Auto Gamma (gamma correction) Linearize Gel Data

If you want to go fast, go alone. If you want to go far, go together. - African proverb

Getting to know ImageJ

First steps

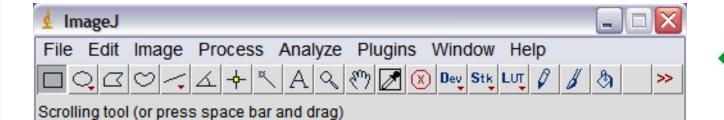
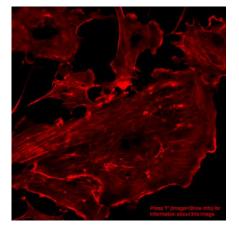
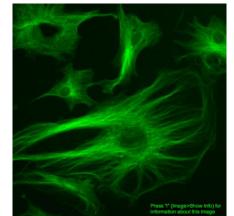
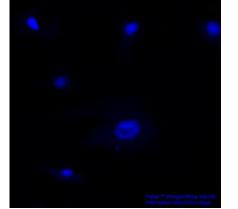


Image Processing Basics







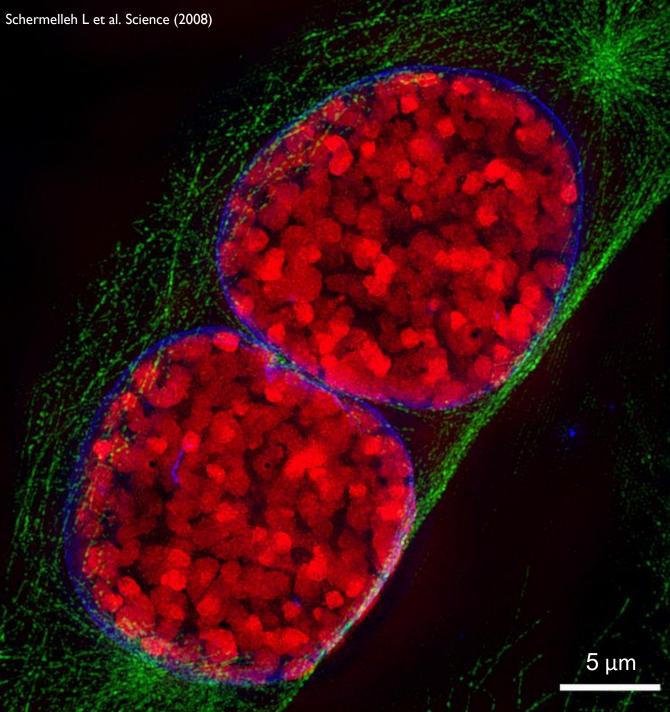
Advanced Tools - Plugins

Department of Biomedical Engineering, Technion *Computational optical imaging 336547*

Tutorial 2 – Photon detectors

Elias Nehme& Yoav Shechtman

3 November 2020



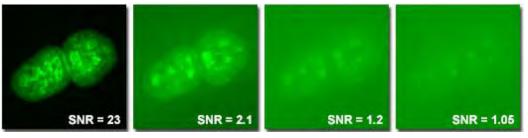
Photon detectors definition and properties

Devices that **detect events or changes in quantities** (intensities) and provide a **corresponding output** (generally as an electrical signal)

the 'best' detector is sensitive

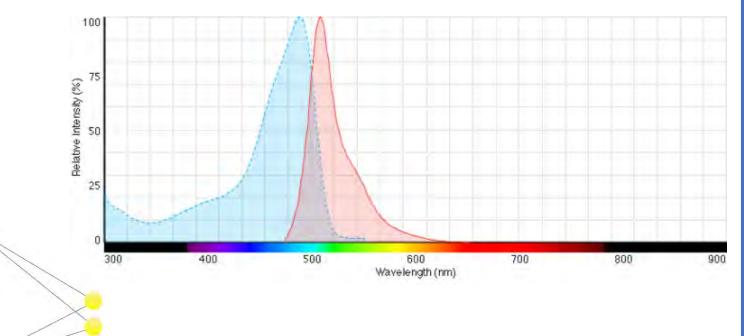
d

Practically there are **many variables to consider**:



Specimen properties

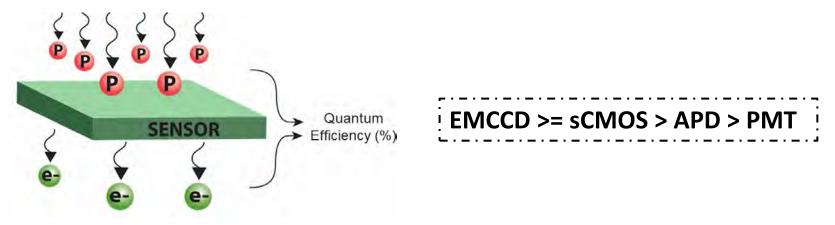
- Photon flux emission per unit area
- Spatial resolution
- Temporal resolution
- Emission wavelength
- Signal-to-noise ratio
- Microscopy Technique

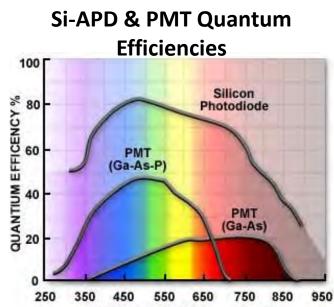


Detector properties

- Acquisition speed
- Quantum efficiency
- Noise levels
- Pixel size
- Dynamic range

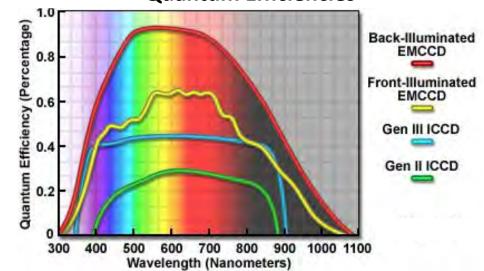






WAVELENGTH (Nanometers)

Electron Multiplying and Intensified CCD Quantum Efficiencies

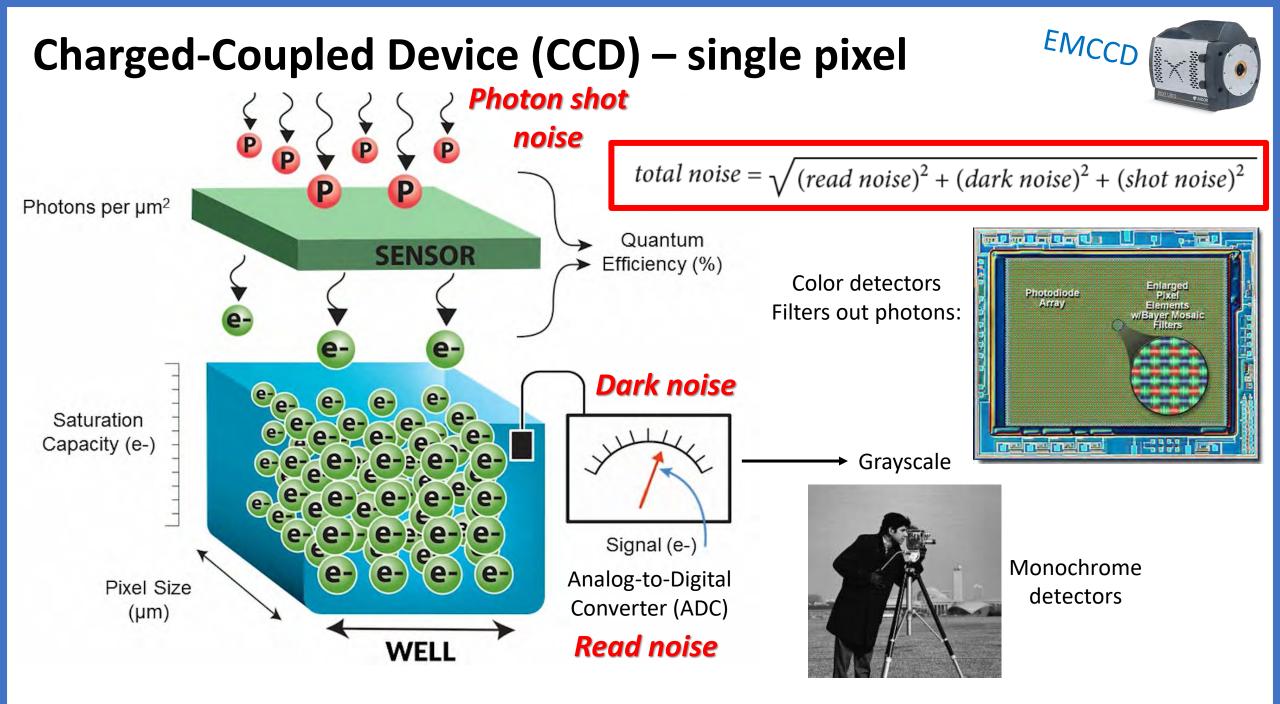


Detector properties

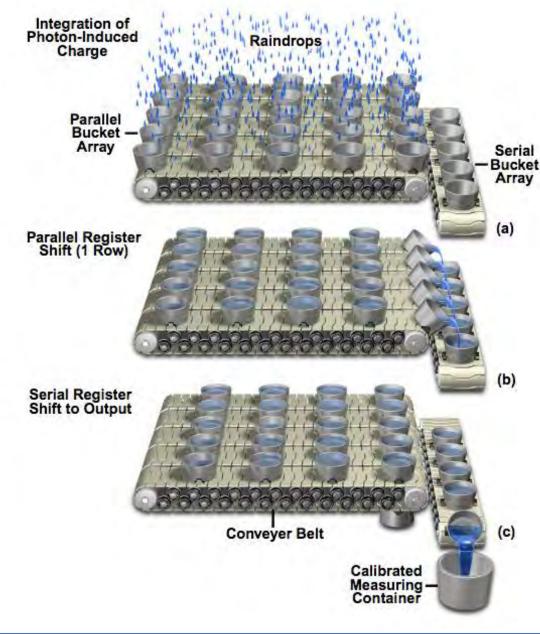
- Acquisition speed
- Quantum efficiency
- Noise levels
- Pixel size
- Dynamic range

Array of pixels detectors:

Single pixel detectors:



CCD Readout – Bucket Brigade Analogy



For each exposure time period:

Photons composing the image have been collected by the pixel elements and **converted into electrical potential**

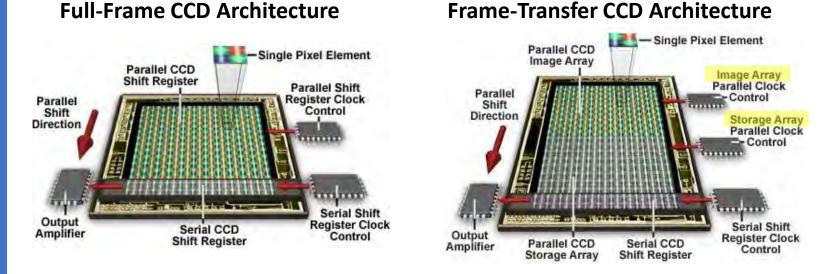
CCD undergoes **readout by shifting rows** of image information in a parallel fashion, one row at a time, **to the serial shift register**

The serial register then **sequentially shifts each row** of image information to an **output amplifier** as a serial data stream

External voltages control the storage and movement of charges

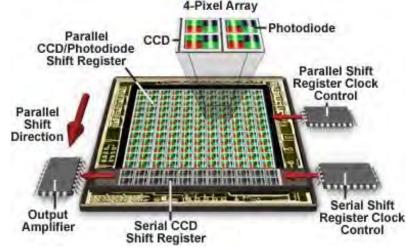
CCD Readout – Full process

- 1. Camera **shutter is opened** to begin accumulation of photoelectrons
- 2. End of the integration period = **shutter is closed**
- 3. Shift of accumulated charge
- 4. An ADC assigns digital value for each pixel according to its voltage
- 5. Each pixel value is **stored in computer** memory or camera frame **buffer**
- 6. Serial readout process is repeated until all pixel rows of the parallel register are emptied
- 7. CCD is cleared of residual charge prior to the next exposure



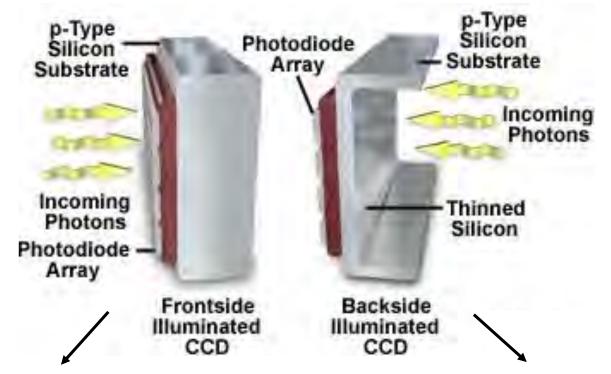
Storage array is being read while the image array is integrating charge for the next image frame

Interline Transfer CCD Architecture



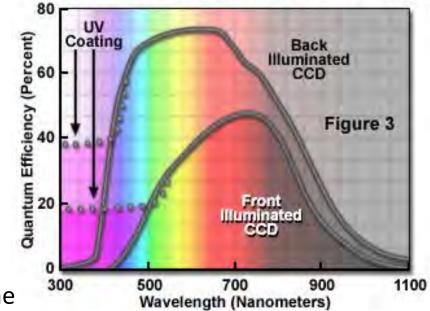
Separate photodiode and parallel readout CCD storage region in each pixel element

Frontside and Backside Illuminated CCDs



Light passes through structures used to transfer the charge from the imaging area → reducing the sensitivity (mainly shorter wavelengths) Light falls onto the back of the CCD in a **thinned transparent region** (about 10-15 microns) → high quantum efficiency can be realized

Frontside and Backside CCD Quantum Efficiency

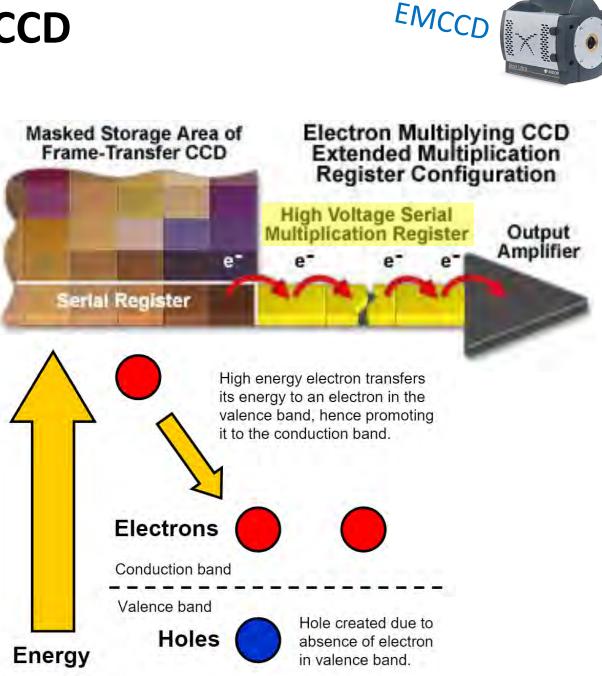


EMCCD – Electron Multiplying CCD

Addition of an **Electron Multiplication register** ('gain register' between the usual serial shift register and the output amplifier)

Provide a mechanism to **improve signal-tonoise ratio for signal levels below the CCD read-noise** floor

When charge is transferred by applying a **higher-than-normal voltage**, secondary electrons are generated in the silicon by the process of **impact ionization**



EMCCD – Different effects

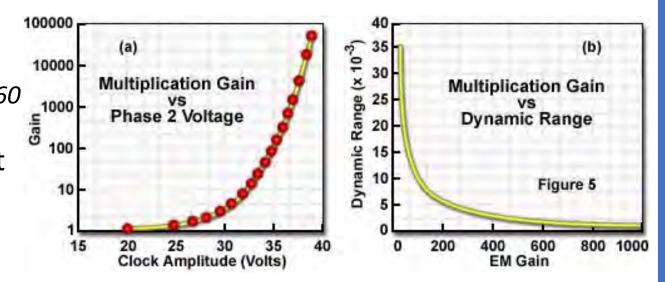
High on-chip multiplication gain for single-photon detection: **any level of unsuppressed dark current is significant**

Cooling system

- Dark noise arises from thermal fluctuations and is reduced by cooling the sensor
- The probability of secondary electron generation increases as temperature decreases → higher gain values are achieved
- The variation of multiplication gain with temperature illustrates the importance of maintaining precise temperature stability

Example: $\begin{bmatrix} N_r / M \end{bmatrix}$ Read noise = 60 electrons (rms) at 10 (MHz) \rightarrow Sub-electron effective read noise level with gain \geq 60

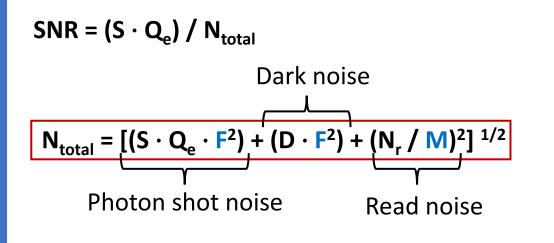
Multiplication gain is independent of readout speed, the **noise performance can be achieved at any speed**



EMCCD – Noise

Due to the **probabilistic nature of the impact ionization process** a statistical variation occurs in the on-chip multiplication gain

The uncertainty in the gain produced introduces an **additional system noise component** which is evaluated quantitatively as the **excess noise factor**



S the number of incident photons per pixel
Q(e) the quantum efficiency
N_{total} the total noise in the system

F the excess noise factor
D the total dark signal
N(r) the camera read noise
M the on-chip multiplication gain

Excess noise factor typically range between 1.0 and 1.4 for multiplication gain factors up to 1000x

Other gain-dependent source of noise: clocking induced charge (CIC)

Detector properties

- Acquisition speed
- Quantum efficiency
- Noise levels
- Pixel size
- Dynamic range

Array of pixels detectors:

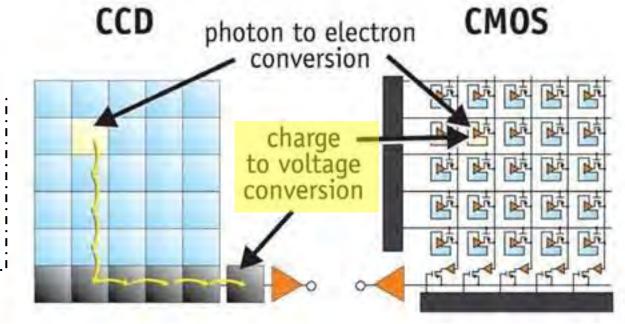
Single pixel detectors:

Complementary Metal Oxide Semiconductor (CMOS)

CMOS convert charge to voltage inside each pixel

CCD move photogenerated charge from pixel to pixel and convert it to voltage at an output node

Fill factor – the **portion** of the **entire pixel array that is used to detect** incoming photons during exposure



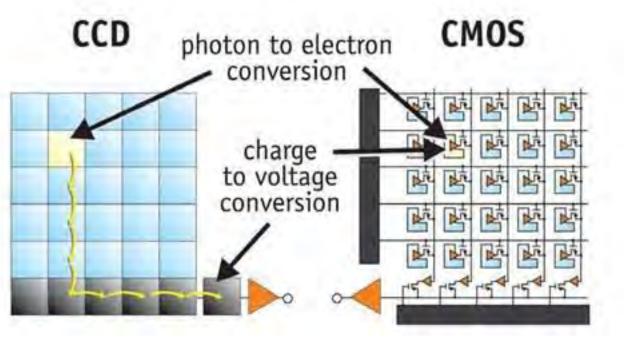
CMOS sensors require around 100x less power than CCD → perfect choice for camera phone sensors

Issues with CMOS:

- 1. Fill factor of 30%: loss in sensitivity and SNR
- 2. Circuitry reflect incident photons: potential pixel crosstalk, light scattering, and diffraction
- 3. Lower quantum efficiency

CMOS VS CCD

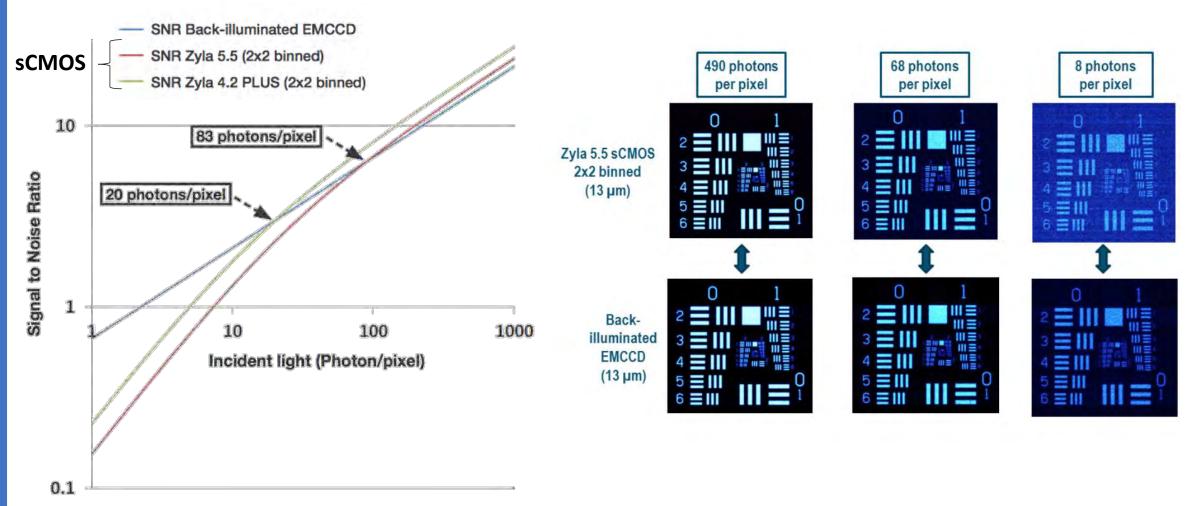
	CCD	CMOS
Fill Factor	High	Low
Image acquisition time	Slow (serial)	Fast (parallel)
Power consumption	High	Low



Scientific CMOS (sCMOS) is a breakthrough technology based on next-generation CMOS image sensor design and fabrication techniques

A comparison – CCDs, EMCCDs, sCMOS					
Parameter	sCMOS (Zyla)	Interline CCD	EMCCD		
Sensor Format	5.5 megapixel	1.4 to 4 megapixel	0.25 to 1 megapixel		
Pixel Size	6.5 µm	6.45 to 7.4 μm	8 to 16 µm		
Read Noise	1.2e ⁻ @ 30 frames/sec 1.45e ⁻ @ 100 frames/sec	4 - 10 e [_]	< 1 e ⁻ (with EM gain)		
Full Frame Rate (max.)	100 frames/sec @ full resolution	3 to 16 frames/sec	~ 30 frames/sec		
Quantum Efficiency (max.)	80%	60%	90% 'back-illuminated' 65% virtual phase		
Dynamic Range	25,000:1 (@ 30 frames/sec)	~ 3,000:1 (@ 11 frames/sec)	8,500:1 (@ 30 frames/sec with low EM gain)		
Multiplicative Noise	None	None	1.41x with EM gain (effectively halves the QE)		

Summary – CCDs, EMCCDs, sCMOS



• CCD: standard for general microscopy applications, best choice for a variety of fluorescence microscopy applications

• EMCCD: best solution when imaging at very low light levels with relatively high speed, such as in single molecule fluorescence

• sCMOS: best solution for large field of views, high speed and sensitivity

Detector properties

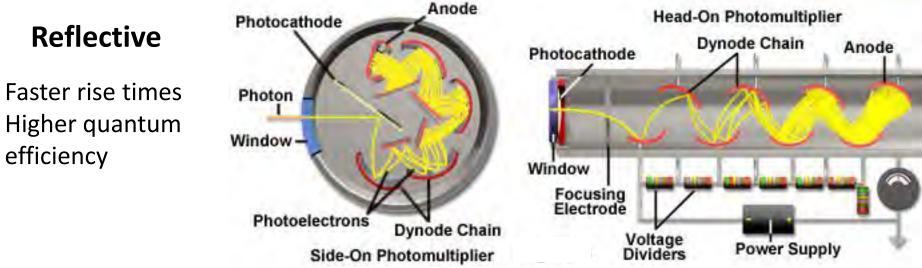
- Acquisition speed
- Quantum efficiency
- Noise levels
- Pixel size
- Dynamic range

Array of pixels detectors:

Single pixel detectors:

Photomultiplier Tube (PMT)

- Low dark current, electron gains of **10⁸**: Very high signal-to-noise ratio
- PMTs do not store charge: nanosecond response to changes to input light fluxes
- Photon counting mode



S/N (Signal-to-Noise) = $S/(N_s^2 + N_d^2)^{1/2}$

N(s) Shot noise N(d) Dark noise fluctuations S/N Signal-to-noise ratio

Dark current

- Thermal emission of electrons from the photocathode
- Leakage current between dynodes
- Electronic noise
- Stray high-energy radiation

Electrons multiplication by impact ionization

Excess Noise Factor < 1.4

PMT

• Larger and more uniform

photosensitive area

Transmission

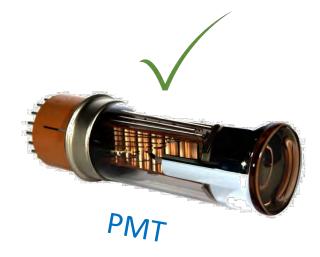
 Sensitive photocathode design

Useful in confocal microscope

Detector properties

- Acquisition speed
- Quantum efficiency
- Noise levels
- Pixel size
- Dynamic range

Array of pixels detectors:

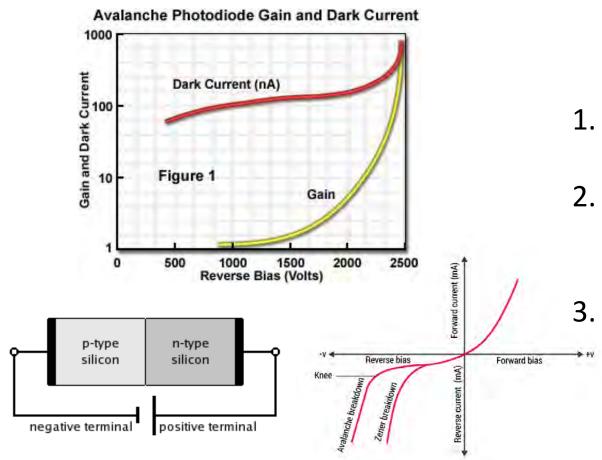


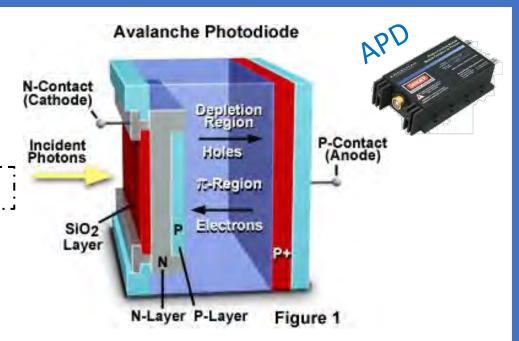
Single pixel detectors:

Avalanche Photodiode (APD)

APDs: semiconductor analog of photomultipliers

- Modest gain (50-1000)
- High quantum efficiency EMCCD >= sCMOS > APD > PMT
- High dark current





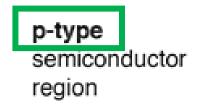
- 1. Absorption of incident photons creates electron-hole pairs
- 2. A high reverse bias voltage creates a strong internal electric field, which accelerates the electrons through the silicon crystal lattice
 3. This produces secondary electrons by impact ionization

 $ENF = \kappa M + (2 - 1/M)(1 - \kappa) > 2$

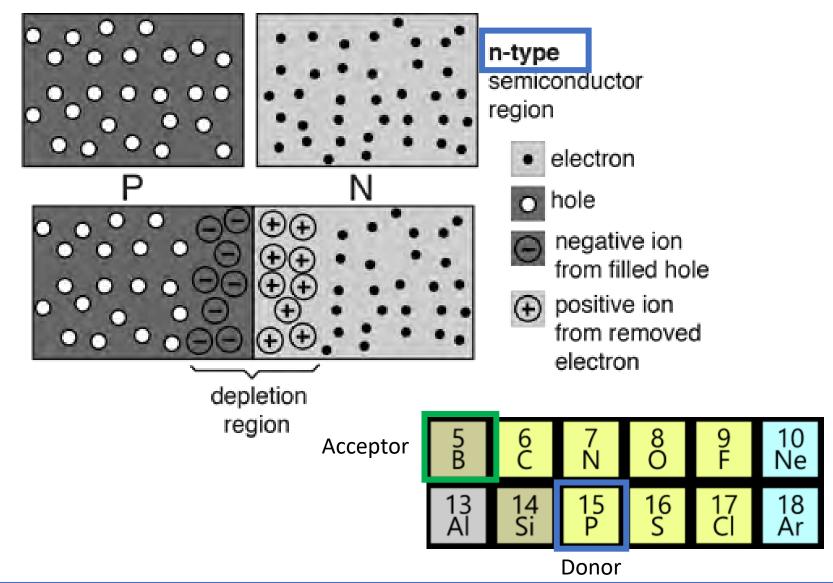
Excess Noise Factor

k the ionizationcoefficient ratioM gain

P-N Junction – reminder



The combining of electrons and holes depletes the holes in the p-region and the electrons in the n-region near the junction.



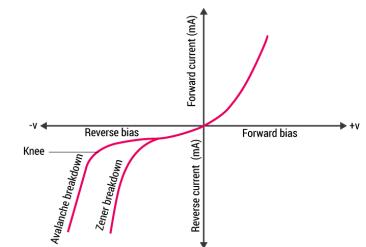
Single-Photon Avalanche Photodiode (SPAD)

SPADs are APDs reverse-biased at a voltage V_A that **exceeds breakdown voltage** V_B of the junction

At this bias – the electric field is so high that a **single charge carrier injected into the depletion layer can trigger a self-sustaining avalanche** (signal gain > 10⁵)

- The current rises swiftly (sub-nanosecond rise-time) to a macroscopic steady level in the milliampere range
- 2. The leading edge of the **avalanche pulse marks** (with picosecond time jitter) **the arrival time of the detected photon**
- 3. The current continues until the **avalanche is quenched by lowering the bias voltage down to or below** V_B : the lower electric field is no longer able to accelerate carriers to impact-ionize with lattice atoms, therefore current ceases. This stops the breakdown or **resets the APD**
- 4. In order to be able to detect **another photon**, the bias voltage must be raised again above breakdown

Single photon counting at 10MHz with dark count rates well below 1kHz & quantum efficiency reaching 90%



Applications – PMTs & SPADs

PMT

- Confocal microscopy
- Fluorescence spectroscopy

SPAD

- TCSPC: time-correlated single photon counting
- Single-molecule detection
- STED microscopy
- Fluorescence correlation spectroscopy (FCS)

SPAD arrays

- 100 000 Frames/s 64x32 Single-Photon Detector Array for 2-D Imaging and 3-D Ranging
- Fluorescence lifetime imaging microscopy and correlation spectroscopy

Detector properties

- Acquisition speed
- Quantum efficiency
- Noise levels
- Pixel size
- Dynamic range

Array of pixels detectors:

Single pixel detectors:

References

M. Vitali, D. Bronzi, A. J. Krmpot, S. Nikolić, F. Schmitt, C. Junghans, S. Tisa, T. Friedrich, V. Vukojević, L. Terenius, F. Zappa, Senior Fellow, IEEE and R. Rigler "A single-photon avalanche camera for fluorescence lifetime imaging microscopy and correlation spectroscopy", JSTQE, 2014

D. Bronzi, F. A. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, "100 000 Frames/s 64x32 Single-Photon Detector Array for 2-D Imaging and 3-D Ranging", IEEE J. Select. Topics Quantum Electron., vol. 20, no. 6, pp. 354–363, Nov. 2014

<u>http://olympus.magnet.fsu.edu/primer/digitalimaging/index.html</u> <u>https://www.microscopyu.com/digital-imaging</u> <u>http://www.hamamatsu.com/jp/en/community/optical_sensors/articles/guide_to_detector_selection/index.html</u> <u>http://www.andor.com/scientific-cameras</u> <u>https://www.wikipedia.org</u>

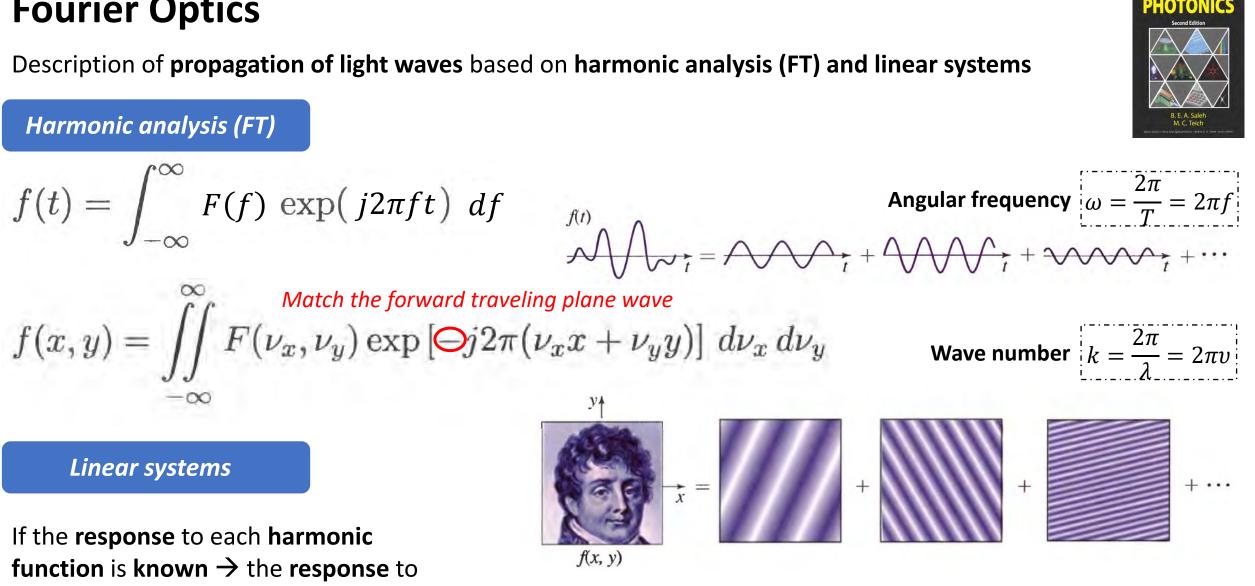
Department of Biomedical Engineering, Technion Computational optical imaging 336547

Tutorial 3 – Fourier optics, Lenses & FFT

Elias Nehme & Yoav Shechtman

10 November 2020

Fourier Optics



an arbitrary input is determined

Plane wave	Wave function		Angular frequency	<i>I</i> !	
The optical wave equation:	Light speed in a medium	$c = \frac{c_0}{n}$	Wave number	$k = \frac{2\pi}{\lambda} = 2\pi v$	
$\nabla^2 u - \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} = 0 \qquad \nabla^2$	$= \partial^2/\partial x^2 + \partial^2/\partial y^2 + \partial^2$	${}^{2}/\partial z^{2}$ Lapla	ician operator		
The monochromatic wave:					
$u(\mathbf{r},t) = \mathbf{a}(\mathbf{r}) \cos[2\pi f t + \varphi(\mathbf{r})]$					
amplitude	phase				
The complex wavefunction:					
$U(\mathbf{r},t) = \mathfrak{a}(\mathbf{r}) \exp[j\varphi(\mathbf{r})] \exp(j2\pi ft) \implies u(\mathbf{r},t) = \operatorname{Re}\{U(\mathbf{r},t)\} = \frac{1}{2}[U(\mathbf{r},t) + U^*(\mathbf{r},t)]$					
$U(\mathbf{r},t) = U(\mathbf{r}) \exp(j2\pi ft)$)			$k = \frac{2\pi f}{c} = \frac{\omega}{c}$	
$\begin{split} U(\mathbf{r},t) &= U(\mathbf{r}) \exp(j2\pi f t) \\ \nabla^2 U - \frac{1}{c^2} \frac{\partial^2 U}{\partial t^2} = 0 \end{split}$	$\nabla^2 U + k^2 U = 0$ Hele for the d	mholtz equa	tion ude $U(\mathbf{r})$	$\frac{\lambda - c}{c} = \frac{c}{f}$	
		. Dlana	wave – Simplest s	olution of the	

 $U(\mathbf{r}) = A \exp(-j\mathbf{k} \cdot \mathbf{r}) = A \exp\left[-j(k_x x + k_y y + k_z z)\right]$ Plane wave – Simplest solution of the Helmholtz equation

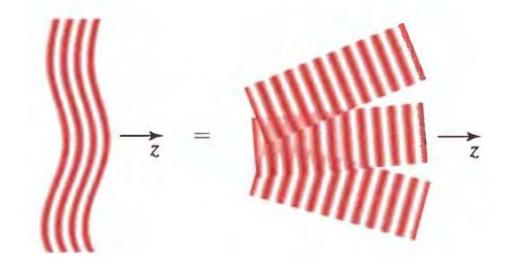
u = u(r, t) Angular frequency $\omega = \frac{2\pi}{T} = 2\pi f$ Wave function **Plane wave** $k = \frac{2\pi}{1} = 2\pi v$ Light speed in a medium $c = \frac{c_0}{c}$ Wave number The wavefront (surface with constant phase): $\lambda = \frac{c}{f} \quad k = \frac{2\pi f}{c} = \frac{\omega}{c}$ **Complex amplitude** $U(\mathbf{r}) = A \exp(-j\mathbf{k} \cdot \mathbf{r}) = A \exp\left[-j(k_x x + k_y y + k_z z)\right]$ $\arg\{U(\mathbf{r})\} = \arg\{A\} - \mathbf{k} \cdot \mathbf{r}$ $\mathbf{k} \cdot \mathbf{r} = k_x x + k_y y + k_z z = 2\pi q + \arg\{A\}$ Parallel planes perpendicular to the wave vector Integer $\vec{k} = (k_x, k_y, k_z)$ There is one-to-one correspondence between: f(x,y) = U(x,y,0)U(x, y, z)Plane wave Harmonic function $U(x, y, z) = f(x, y) \exp(-jk_z z)$ f(x,y)Harmonic function Plane wave $k_x^2 + k_y^2 + k_z^2 = k^2 = \left(\frac{2\pi}{\lambda}\right)^2 || k_z = \Phi \sqrt{k^2 - k_x^2 - k_y^2}$ forward traveling wave

Fourier Optics principles

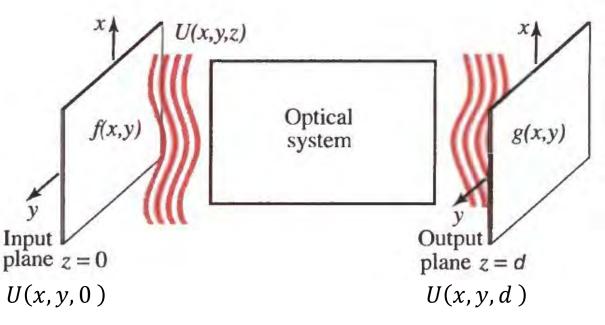
Harmonic analysis (FT)

Linear systems

An **arbitrary function** can be analyzed as a **superposition of harmonic function** → An **arbitrary** wave may be analyzed as a **sum of plane waves**



Describing the **propagation of light** through linear optical component **using linear-system approach**

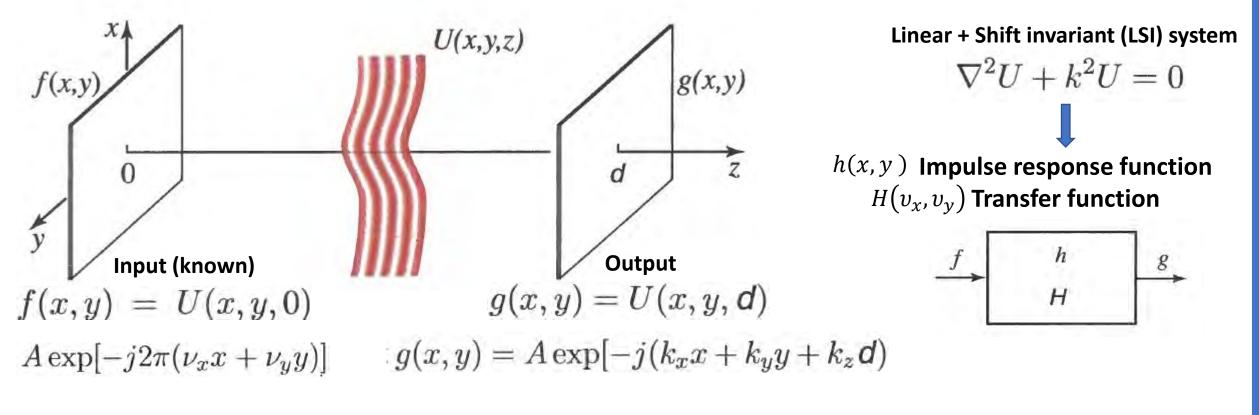


Impulse response function Transfer function

Transfer function of Free space

 $k_{z} = \sqrt{k^{2} - k_{x}^{2} - k_{y}^{2}}$

Propagation of monochromatic optical wave in the free space between the planes z=0 and z=d:



$$H(\nu_x,\nu_y) = \frac{g(x,y)}{f(x,y)} = \exp(-jk_z d) \implies H(\nu_x,\nu_y) = \exp\left(-j2\pi d\sqrt{\lambda^{-2} - \nu_x^2 - \nu_y^2}\right)$$

Transfer function of Free space

$$\frac{H(\nu_x, \nu_y) = \exp\left(-j2\pi d\sqrt{\lambda^{-2} - \nu_x^2 - \nu_y^2}\right)}{\nu_x^2 + \nu_y^2 \le \lambda^{-2} |H(\nu_x, \nu_y)| = 1 \arg\{H(\nu_x, \nu_y)\}}{\text{Spatial shift}} \\
\nu_x^2 + \nu_y^2 \ge \lambda^{-2} |H(\nu_x, \nu_y)| \arg\{H(\nu_x, \nu_y)\} = 0 \\
\text{Evanescent wave}$$
Fresnel approximation:

$$\nu_x^2 + \nu_y^2 \ll \lambda^{-2} \\
\frac{H(\nu_x, \nu_y) \approx H_0 \exp\left[j\pi\lambda d\left(\nu_x^2 + \nu_y^2\right)\right]}{H_0 = \exp(-jkd)} \\
\frac{N_F - \frac{a^2}{\lambda d}}{k} \\
\frac{N_F + \frac{a^2}{\lambda d}}{k} \\
\frac{N_F - \frac{A^2}{\lambda d}$$

Impulse response of Free space

Fresnel approximation:

$$H(\nu_x, \nu_y) \approx H_0 \exp\left[j\pi\lambda d\left(\nu_x^2 + \nu_y^2\right)\right] \stackrel{F^{-1}}{\longrightarrow}$$

$$h(x,y) \approx h_0 \exp\left[-jk \frac{x^2 + y^2}{2d}\right]$$

$$h_0 = \frac{J}{\lambda d} \exp(-jkd)$$

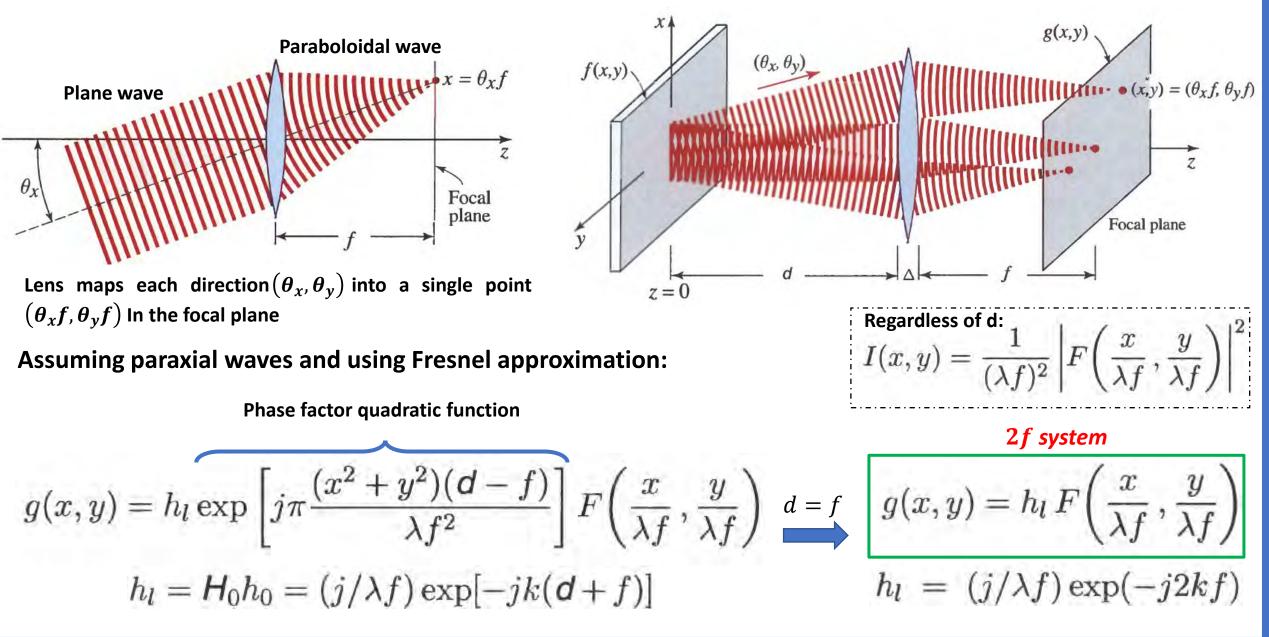
Fraunhofer approximation:

 $g(x,y) \approx h_0 F\left(rac{x}{\lambda d}, rac{y}{\lambda d}
ight)$ $N_{
m F} \ll 1$ and $N'_{
m F} \ll 1$ $N'_{
m F} = b^2/\lambda d$ Input plane confined to a circle of radius b $N_{
m F} = rac{a^2}{\lambda d}$ Output plane confined to a circle of radius a

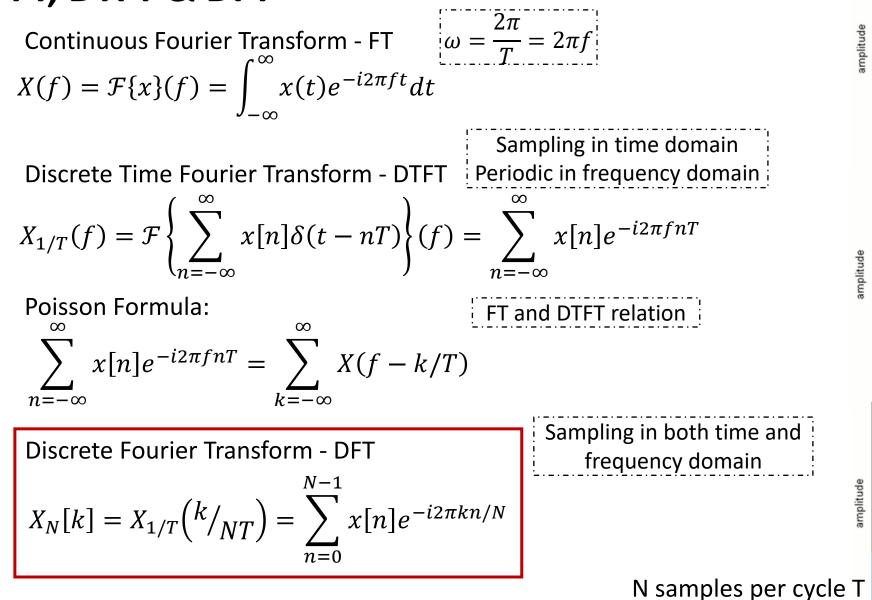
If the propagation distance d is sufficiently long, the only plane wave that contributes to the complex amplitude at a point (x, y) in the output plane, is the wave with direction making angles $\theta_x = \frac{x}{d}$ and $\theta_y = \frac{y}{d}$ with the optical axis

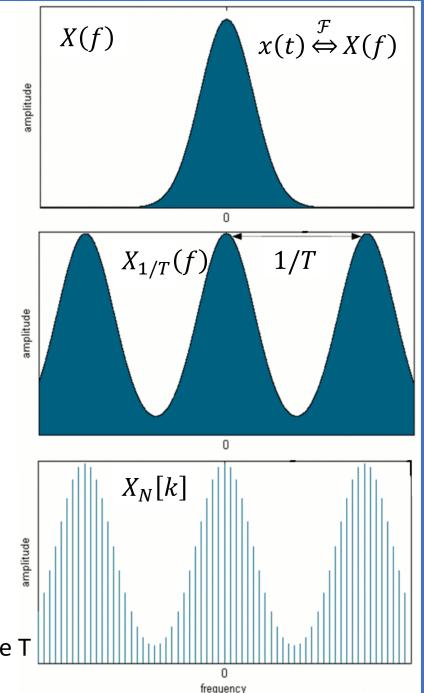
Paraxial approximation: $\theta_x \approx \lambda \nu_x$, $\theta_y \approx \lambda \nu_y \implies v_x = \frac{X}{\lambda d} v_y = \frac{y}{\lambda d}$

Fourier-Transform Property of a Lens



FT, DTFT & DFT





DFT properties Invertible linear transformation $X_{N}[k] = \sum_{n=0}^{N-1} x[n]e^{-i2\pi kn/N} \& x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X_{N}[k]e^{i2\pi kn/N} \qquad \mathbf{F} = \begin{bmatrix} \omega_{N}^{0\cdot0} & \omega_{N}^{0\cdot1} & \dots & \omega_{N}^{0\cdot(N-1)} \\ \omega_{N}^{1\cdot0} & \omega_{N}^{1\cdot1} & \dots & \omega_{N}^{1\cdot(N-1)} \\ \vdots & \vdots & \ddots & \vdots \\ \omega_{N}^{(N-1)\cdot0} & \omega_{N}^{(N-1)\cdot1} & \dots & \omega_{N}^{(N-1)\cdot(N-1)} \end{bmatrix}$

$$u_k = \left[e^{-i2\pi kn/N} \mid n = 0, 1, ..., N - 1\right]^T$$

N-periodic $X_N[k] = X_N[k+N]$ & x[n] = x[n+N] [The signal must be periodic – if not it is concatenated] $F \cdot F^* = I$

Translation $\begin{array}{l} x[n] \rightarrow x[n-m] \stackrel{\mathcal{F}}{\underset{\mathcal{F}}{\Leftrightarrow}} X[k] \rightarrow X[k] e^{-i2\pi km/N} \\ X[k] \rightarrow X[k-p] \Leftrightarrow x[n] \rightarrow x[n] e^{i2\pi pn/N} \end{array}$

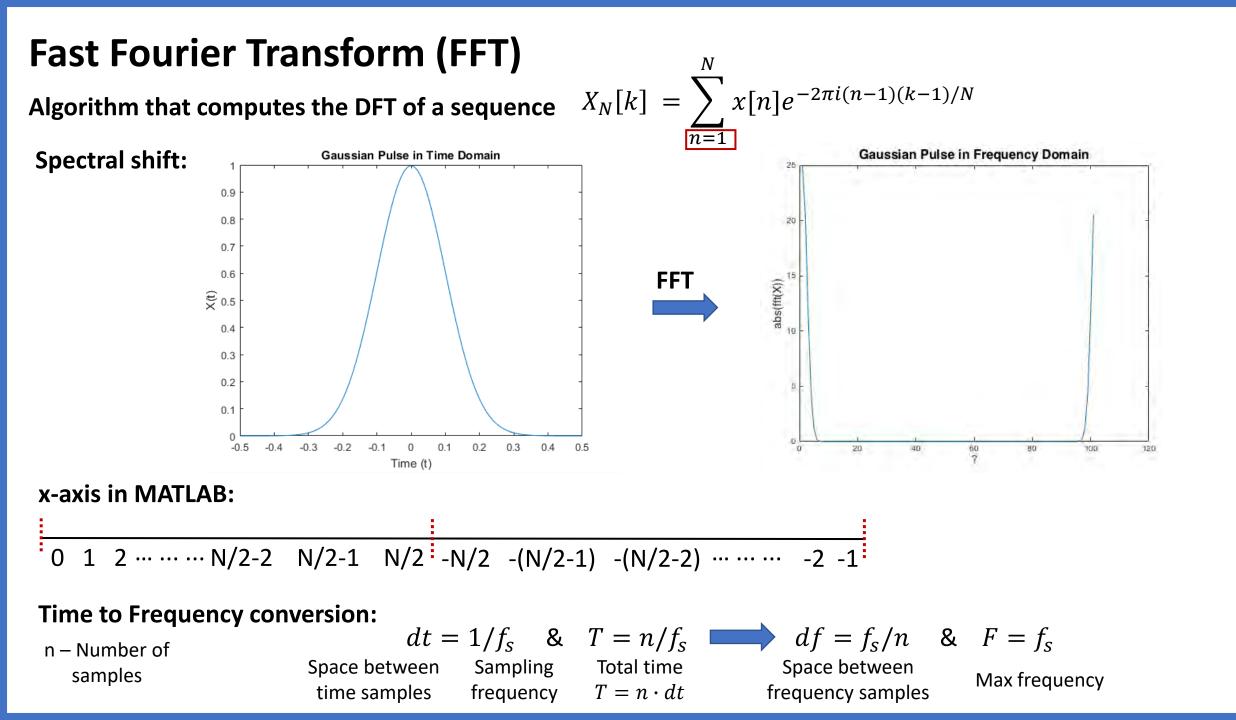
Convolution

 $x[n] * y[n] \stackrel{\mathcal{F}}{\Leftrightarrow} X[k]Y[k]$ $X[k] * Y[k] \Leftrightarrow N \cdot x[n] \cdot y[n]$ **Orthonormal basis – Unitary DFT matrix**

$$u_{k} = \left[\frac{1}{\sqrt{N}}e^{-i2\pi kn/N} \mid n = 0, 1, ..., N\right]^{T}$$
Signal energy unchanged

Parseval's Theorem – Energy conservation

$$\sum_{n=0}^{N-1} |x[n]|^2 = \sum_{k=0}^{N-1} |X[k]|^2$$



FFT in MATLAB

Quantity

dt = 1/fs

abs(y)

fs/n

fs/2

n = length(x)

t = (0:m-1)/fs

y = fft(x,n)

 $(abs(y).^2)/n$

f = (0:n-1)*(fs/n)

х

fs

$$dt = 1/f_s \quad \& \quad T = n/f_s$$

Space between time Sampling frequency Total time $T = n \cdot dt$ samples

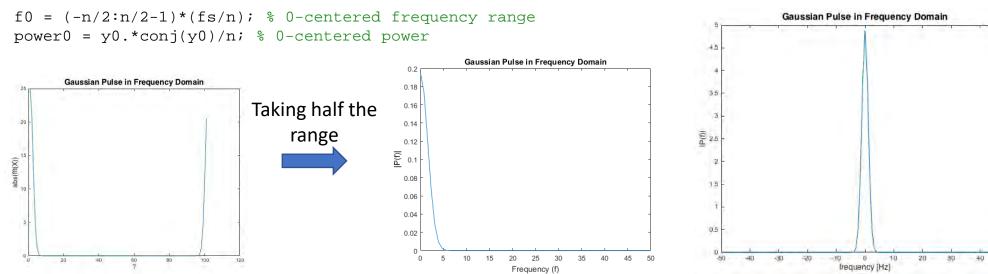
samples

n – Number of $df = f_s/n$ & $F = f_s$ samples

FFT shift

Space between frequency Max frequency

y0 = fftshift(y); % for visualizing the	Fourier	transform	with	the	zero-frequency
component in the middle of the spectrum	•				



Description

Sampled data

Samples/unit time

Time range for data

Amplitude of the DFT

Frequency increment

Power of the DFT

Frequency range

Nyquist frequency

Time increment per sample

Window length (number of samples)

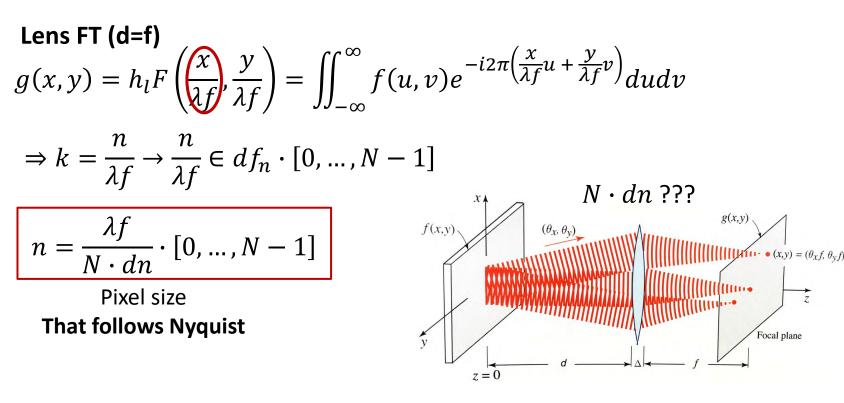
Discrete Fourier transform (DFT)

A Lens in MATLAB

2D DFT & spatial: N-1 N-1 $g[k,p] = F[k]p] = \sum_{n} \sum_{n} f[n,m]e^{-2\pi i [nk+mp]/N}$ n=0 m=0 $f_{max,n} = \frac{1}{dn} \rightarrow df_n = \frac{f_{max,n}}{N}$ $f_{max,n}$: equivalent sampling $\Rightarrow k \in df_n \cdot [0, \dots, N-1]$

frequency. A single measurement is performed *per* physical (pixel) size dn

 $X_N[k] = \sum x[n]e^{-i2\pi kn/N}$ 1D DFT: Time: $dt = 1/f_{\rm s}$ & $T = n/f_{\rm s}$ Space between time Sampling frequency Total time $T = n \cdot dt$ samples n – Number of $df = f_s/n$ & $F = f_s$ samples Space between frequency Max frequency samples



$n = \frac{\lambda J}{N \cdot dn} \cdot [0, \dots, N-1]$ **A Lens in MATLAB** *f*-number: $f_{\#} = \frac{f}{D} = \frac{1}{2NA_{g}}$ g(x,y) $N \cdot dn$??? f(x,y) $(x,y) = (\theta_x f, \theta_y f)$ Focal plane z = 0Diffraction Limit – Rayleigh Criterion: $\Delta d = \left(0.61 \frac{\lambda}{NA}\right)$ Nyquist Sampling: $dx = \left(0.61 \frac{\lambda}{NA}\right) \frac{1}{2} \implies dn = \lfloor dx \rfloor$

N: # of Fourier samples $f_{max,n} = \frac{1}{dn} \rightarrow df_n = \frac{f_{max,n}}{N}$

N determines the sampling resolution in the Fourier domain. Technically, N is entirely determined by the lowest frequency component. In an $K \times K$ image, the "largest" feature is the size of the image itself. Therefore, N = K

Should one desire to improve the Fourier domain sampling resolution, he may do so by **padding the image with** additional elements (thereby increasing the "numerical" image size)

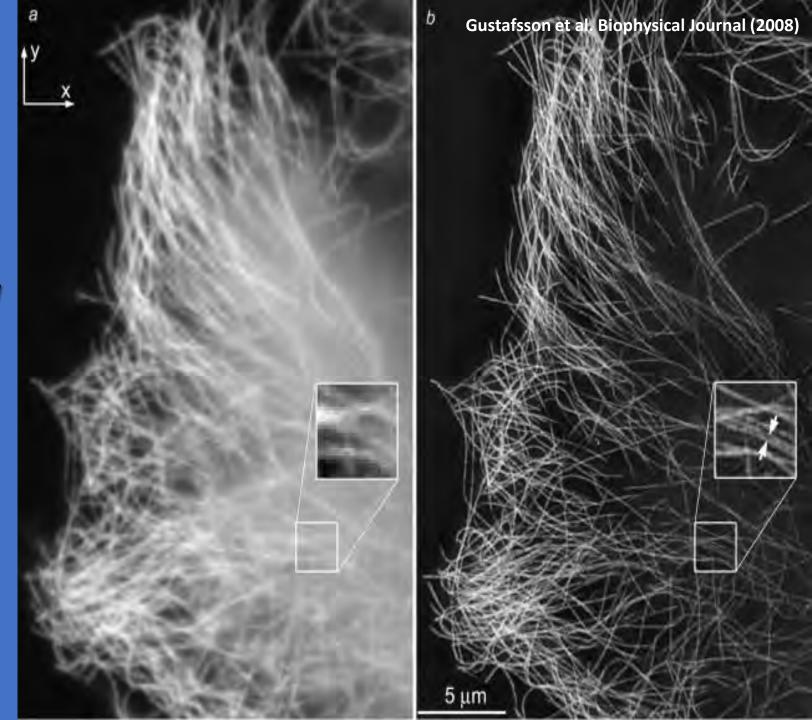
Department of Biomedical Engineering, Technion Computational optical imaging 336547

Tutorial 4 – Structured Illumination Microscopy

Elias Nehme & Yoav

Shechtman

17 November 2020

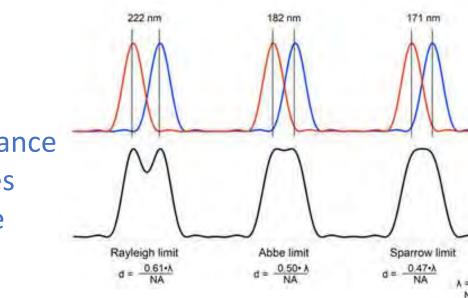


Spatial resolution

d

Subject of passionate scientific debate for decades:

The minimum **resolvable** distance between two point-sources emitting at the same time

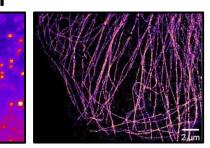


Classical resolution definitions:

With the development of **fluorescence nanoscopy techniques** this debate has resurfaced:

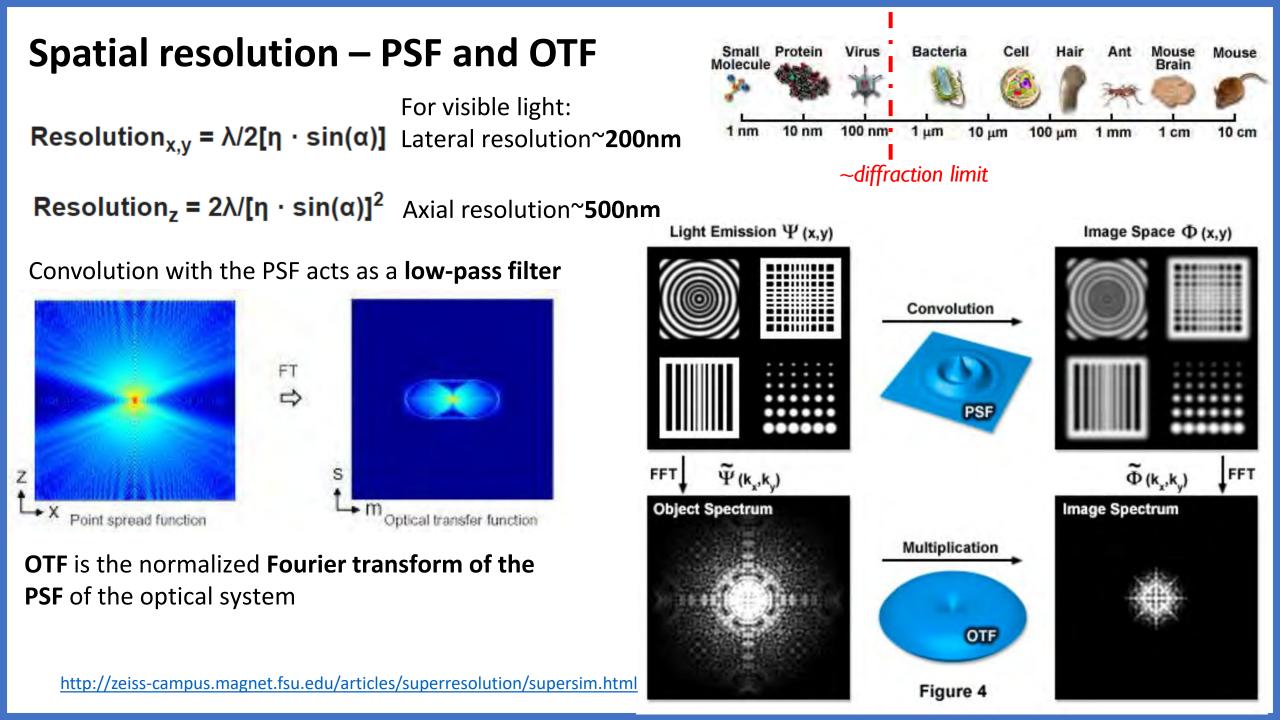
Response to Comment on "Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics" STED

STORM/PALM

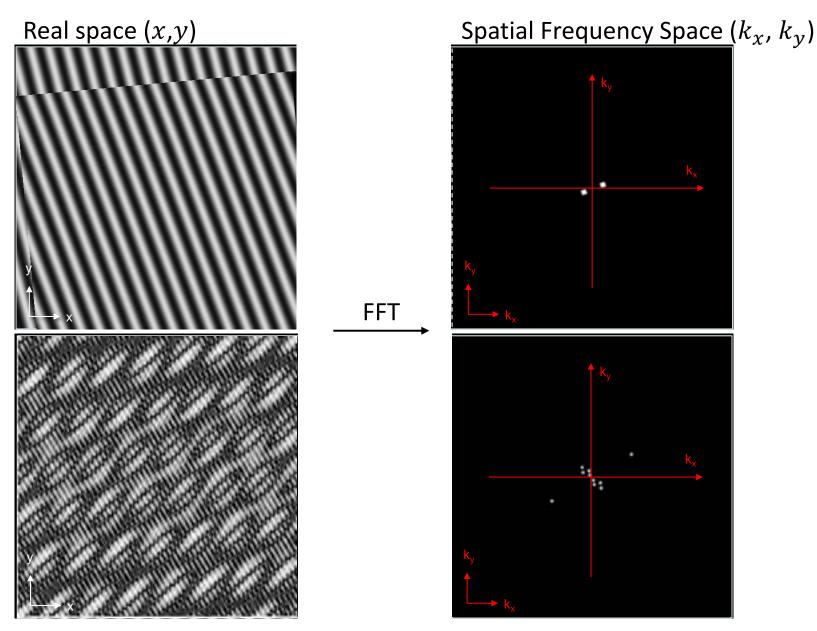


Li, Dong, and Eric Betzig, Science (2016)

Sahl et al. in their Comment raise criticisms of our work that fall into three classes: image artifacts, resolution criteria, and comparative performance on live cells. We explore each of these in turn.

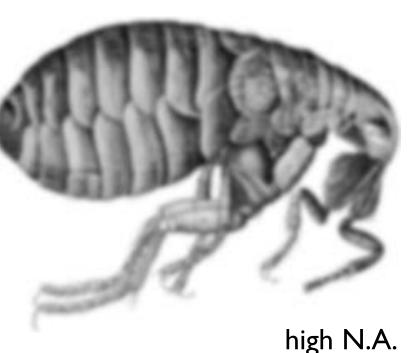


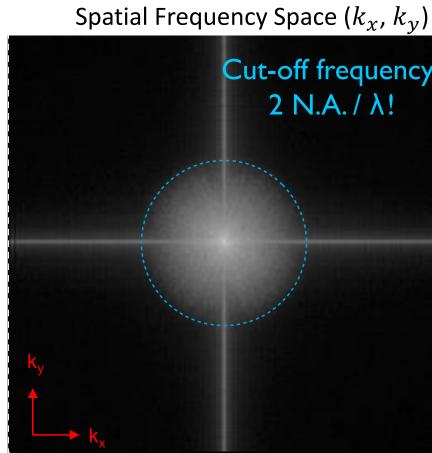
Harmonic Functions & Complex Amplitudes



Harmonic Functions & Complex Amplitudes

Real space (x,y)

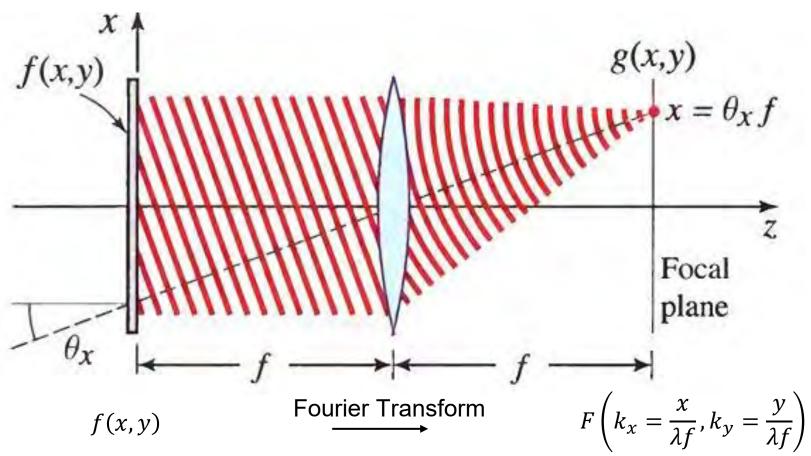




The classical limit of resolution in the microscope translates into frequency space, defining a maximum observable spatial frequency: $k_0 = 2NA / \lambda_{em}$

An image may be analyzed as a **sum of harmonic functions of different spatial frequencies and complex amplitudes**

Fourier-Transform Lens Property – A Reminder



A "spatial frequency" → frequency of a harmonic function with which the image is analyzed (previous slides)

Each harmonic function in the image correspondingly **acts as a local diffraction grating**, thus producing plane waves traveling at **an angle with the optical axis**

The lens subsequently performs a Fourier transform; consequently, harmonic functions (complex exponentials) are transformed into spots

In short: **the "finer" the image features**, the **higher the spatial frequency**, the "finer" the effective grating, the **larger the diffraction angle** and the **farther from the optical axis** is the focused spot on the focal (Fourier) plane

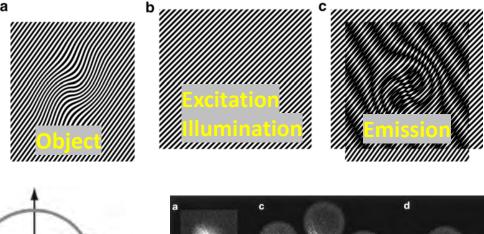
Structured Illumination Microscopy (SIM) – Concept

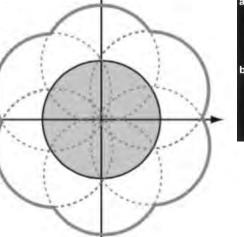
Artificially move unobservable high-frequency information into the observable region through frequency mixing with a known illumination structure

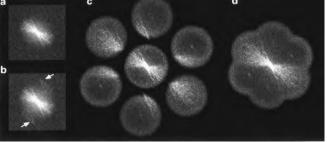
<u>Moiré fringes</u> – (a) and (b) are two examples of fine patterns. When one is superimposed onto the other, a coarser beat pattern—Moiré fringes—appears (c)

 \rightarrow Encoding high frequency information in the form of lower (observable) frequency components

Resolution is stretched from k_0 to $k_1 + k_0$ The magnitude of k_1 cannot exceed that of k_0 \rightarrow Ultimate theoretical resolution limit becomes $2k_0$







Rotated through steps of 120 degrees

2x lateral resolution improvement over diffraction-limited imaging

SIM – Formulation

Sinusoidal Illumination Intensity

$$I_{\theta,\phi}(\mathbf{r}) = I_o \left[1 - \frac{m}{2} \cos\left(2\pi \mathbf{p}_{\theta} \cdot \mathbf{r} + \phi\right) \right]$$
(1)

Observed Fluorescence Emission

$$D_{\theta,\phi}(\mathbf{r}) = [S(\mathbf{r})I_{\theta,\phi}(\mathbf{r})] \otimes H(\mathbf{r}) + N(\mathbf{r})$$
(2)

 $I_{\theta,\phi}(\mathbf{r})$: illuminating sinusoidal intensity pattern $\mathbf{r} = (x, y)$: spatial position vector I_0 : peak illumination $\mathbf{p}_{\theta} = (p \cdot \cos \theta , p \cdot \sin \theta)$: sinusoidal illumination frequency vector in reciprogal space θ : orientation of sinusoidal illumination pattern ϕ : phase of sinusoidal illumination pattern

m: modulation factor

Observed Fluorescence Emission in Frequency Domain $\tilde{D}_{\theta,\phi}(\mathbf{k}) = \left[\tilde{I}_{\theta,\phi}(\mathbf{k}) \otimes \tilde{S}(\mathbf{k})\right] \cdot \tilde{H}(\mathbf{k}) + \tilde{N}(\mathbf{k})$ $= \frac{I_o}{2} \left[\tilde{S}(\mathbf{k}) - \frac{m}{2}\tilde{S}(\mathbf{k} - \mathbf{p}_{\theta})e^{-i\phi} - \frac{m}{2}\tilde{S}(\mathbf{k} + \mathbf{p}_{\theta})e^{i\phi}\right] \cdot \tilde{H}(\mathbf{k}) + \tilde{N}(\mathbf{k}) \quad (3)$

Obtaining 3 elements in k space – the original one and 2 more which are shifted versions of the original $S(\mathbf{r})$: Fluorophore density distribution within specimen $D_{\theta,\phi}(\mathbf{r})$: observed fluorescence emission through the optical system $H(\mathbf{r})$: optical system's PSF $N(\mathbf{r})$: additive Gaussian (white) noise

 $\tilde{H}(\mathbf{k})$: Optical system's OTF

SIM – Formulation

where $\Delta =$

Three SIM images – $D_{\theta,\phi_1}(\mathbf{r})$, $D_{\theta,\phi_2}(\mathbf{r})$ and $D_{\theta,\phi_3}(\mathbf{r})$ – of the specimen are acquired, corresponding to **three** different illumination phases; typically $\phi_1 = 0^\circ$, $\phi_2 = 120^\circ$ and $\phi_3 = 240^\circ$

$$\begin{split} \tilde{D}_{\theta,\phi}(\mathbf{k}) &= \begin{bmatrix} \tilde{I}_{\theta,\phi}(\mathbf{k}) \otimes \tilde{S}(\mathbf{k}) \end{bmatrix} \cdot \tilde{H}(\mathbf{k}) + \tilde{N}(\mathbf{k}) \\ &= \frac{I_o}{2} \begin{bmatrix} \tilde{S}(\mathbf{k}) - \frac{m}{2} \tilde{S}(\mathbf{k} - \mathbf{p}_{\theta}) e^{-i\phi} \\ &- \frac{m}{2} \tilde{S}(\mathbf{k} + \mathbf{p}_{\theta}) e^{i\phi} \end{bmatrix} \cdot \tilde{H}(\mathbf{k}) + \tilde{N}(\mathbf{k}) \\ &= \frac{I_o}{2} \begin{bmatrix} \tilde{S}(\mathbf{k}) - \frac{m}{2} \tilde{S}(\mathbf{k} - \mathbf{p}_{\theta}) \tilde{H}(\mathbf{k}) \\ &- \frac{m}{2} \tilde{S}(\mathbf{k} + \mathbf{p}_{\theta}) e^{i\phi} \end{bmatrix} \cdot \tilde{H}(\mathbf{k}) + \tilde{N}(\mathbf{k}) \\ &\text{moisy} \\ \text{estimate} \\ \text{of} \begin{bmatrix} \tilde{S}(\mathbf{k}) \tilde{H}(\mathbf{k}) \\ \tilde{S}(\mathbf{k} - \mathbf{p}_{\theta}) \tilde{H}(\mathbf{k}) \\ \tilde{S}(\mathbf{k} - \mathbf{p}_{\theta}) \tilde{H}(\mathbf{k}) \end{bmatrix} = \mathbf{M}^{-1} \begin{bmatrix} \tilde{D}_{\theta,\phi_1}(\mathbf{k}) \\ \tilde{D}_{\theta,\phi_2}(\mathbf{k}) \\ \tilde{D}_{\theta,\phi_3}(\mathbf{k}) \end{bmatrix} \end{split}$$
(5)
$$\mathbf{M}^{-1} = \frac{1}{\Delta} \times \begin{bmatrix} e^{i(\phi_2 - \phi_3)} - e^{i(\phi_3 - \phi_2)} & e^{i(\phi_3 - \phi_1)} - e^{i(\phi_1 - \phi_3)} \\ \frac{2}{m} (e^{i\phi_3} - e^{i\phi_2)} & \frac{2}{m} (e^{i\phi_3} - e^{i\phi_1}) \\ \frac{2}{m} (e^{-i\phi_2} - e^{-i\phi_3}) & \frac{2}{m} (e^{-i\phi_3} - e^{-i\phi_1}) \\ \frac{2}{m} (e^{-i\phi_2} - e^{-i\phi_3}) & \frac{2}{m} (e^{-i\phi_3} - e^{-i\phi_1}) \\ \frac{2}{m} (e^{-i\phi_2} - e^{-i\phi_3}) & \frac{2}{m} (e^{-i\phi_3} - e^{-i\phi_1}) \\ \frac{2}{m} (e^{-i\phi_2} - e^{-i\phi_3}) & \frac{2}{m} (e^{-i\phi_3} - e^{-i\phi_3}) \\ \frac{2}{m} (e^{-i\phi_3} - e^{-i\phi_3}) & \frac{2}{m} (e^{-i\phi_3} - e^{-i\phi_3}) \\ \frac{2}{m} (e^{-i\phi_3} - e^{-i\phi_3}) & \frac{2}{m} (e^{-i\phi_3} - e^{-i\phi_3}) \\ \frac{2}{m} (e^{-i\phi_3} - e^{-i\phi_3}) & \frac{2}{m} (e^{-i\phi_3} - e^{-i\phi_3}) \\ \frac{2}{m} (e^{-i\phi_3} - e^{-i\phi_3}) & \frac{2}{m} (e^{-i\phi_3} - e^{-i\phi_3}) \\ \frac{2}{m} (e^{-i\phi_3} - e^{-i\phi_3}) & \frac{2}{m} (e^{-i\phi_3} - e^{-i\phi_3}) \\ \frac{2}{m} (e^{-i\phi_3} - e^{-i\phi_3}) & \frac{2}{m} (e^{-i\phi_3} - e^{-i\phi_3}) \\ \frac{2}{m} (e^{-i\phi_3} - e^{-i\phi_3}) & \frac{2}{m} (e^{-i\phi_3} - e^{-i\phi_3}) \\ \frac{2}{m} (e^{-i\phi_3} - e^{-i\phi_3}) & \frac{2}{m} (e^{-i\phi_3} - e^{-i\phi_3}) \\ \frac{2}{m} (e^{-i\phi_3} - e^{-i\phi_3}) & \frac{2}{m} (e^{-i\phi_3} - e^{-i\phi_3}) \\ \frac{2}{m} (e^{-i\phi_3} - e^{-i\phi_3}) & \frac{2}{m} (e^{-i\phi_3} - e^{-i\phi_3}) \\ \frac{2}{m} (e^{-i\phi_3} - e^{-i\phi_3}) & \frac{2}{m} (e^{-i\phi_3} - e^{-i\phi_3}) \\ \frac{2}{m} (e^{-i\phi_3} - e^{-i\phi_3}) & \frac{2}{m} (e^{-i\phi_3} - e^{-i\phi_3}) \\ \frac{2}{m} (e^{-i\phi_3} - e^{-i\phi_3}) & \frac{2}{m} (e^{-i\phi_3} - e^{-i\phi_3}) \\ \frac{2}{m} (e^{-i\phi_3} - e^{-i\phi_3}) & \frac{2}{m} (e^{-i\phi_3} - e^{-i\phi_3}) \\ \frac{2}{m} (e^{-i\phi_3} - e^{-i\phi_3}) & \frac{2}{m} (e^{-i\phi_3} - e^{-i\phi_3}) \\ \frac{2}{m} (e^{$$

ly, the ungraded ons of $\tilde{S}(\mathbf{k})$, $\tilde{S}(\mathbf{k})$ $(\boldsymbol{k} + \boldsymbol{p}_{\theta})$ are obtained iltering of their ng noisy estimates obtained by Eq. 5

 $-\frac{m}{2}e^{+i\phi_1}$ $-\frac{m}{2}e^{+i\phi_2}$ $-\frac{m}{2}e^{+i\phi_3}$

Weiner filter – A Reminder

Consider a convolution system:

$$x \rightarrow h \rightarrow y$$

$$y = h * x \longrightarrow y_f = h_f \cdot x_f \longrightarrow$$
 What about $\hat{x}_f = y_f / h_f$?

We can't just divide in frequency domain because there are zeros in h_f

Real world:

$$y_f = h_f \cdot x_f + n$$

Wiener filter: "regularize" the problem $\hat{x}_f = \frac{h_f^*}{|h_f|^2 + \frac{1}{SNR_f}} \cdot y_f = \frac{1}{h_f} \left[\frac{|h_f|^2}{|h_f|^2 + \frac{1}{SNR_f}} \right] \cdot y_f$

Gain

0

Frequency

f /9

This suppresses frequencies where the SNR is low (high noise).

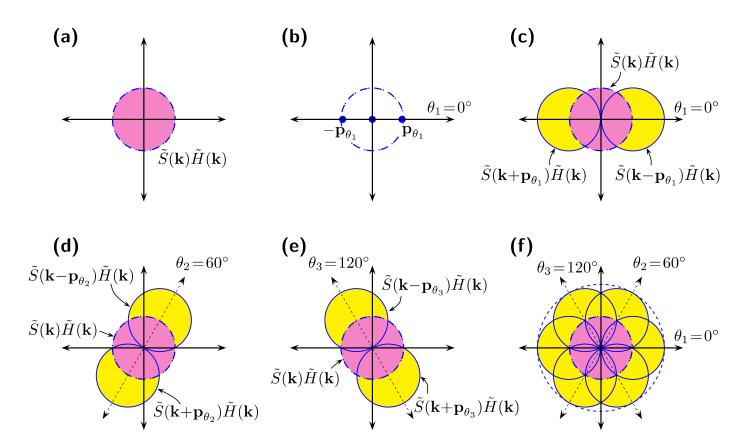
And acts as an inverse filter where the noise is negligible.

SIM – Formulation

$$\begin{array}{l} \text{noisy} \\ \text{estimate} \\ \text{of} \end{array} \begin{bmatrix} \tilde{S}(\mathbf{k})\tilde{H}(\mathbf{k}) \\ \tilde{S}(\mathbf{k} - \mathbf{p}_{\theta})\tilde{H}(\mathbf{k}) \\ \tilde{S}(\mathbf{k} + \mathbf{p}_{\theta})\tilde{H}(\mathbf{k}) \end{bmatrix} = \mathbf{M}^{-1} \begin{bmatrix} \tilde{D}_{\theta,\phi_{1}}(\mathbf{k}) \\ \tilde{D}_{\theta,\phi_{2}}(\mathbf{k}) \\ \tilde{D}_{\theta,\phi_{3}}(\mathbf{k}) \end{bmatrix}$$

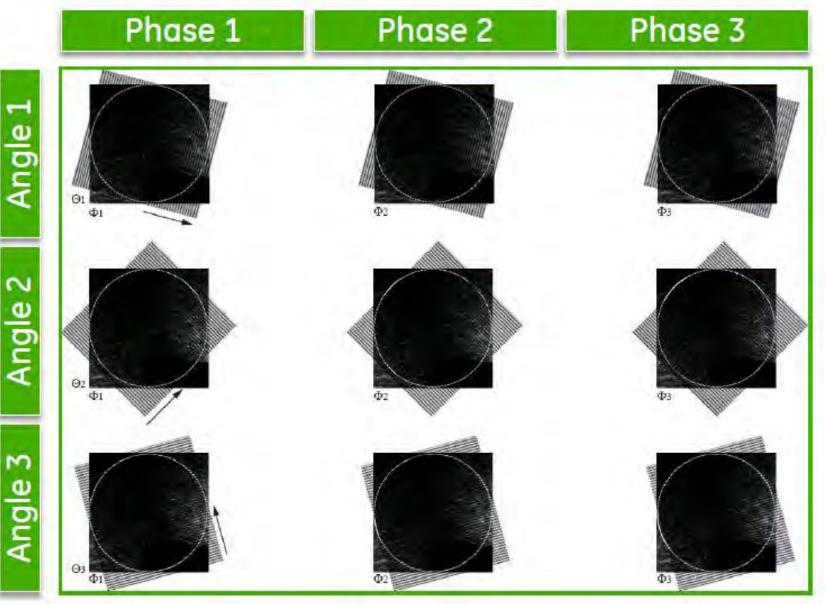
By changing the angular orientation θ of the illuminating sinusoidal pattern $(\theta_1 = 0^\circ, \theta_2 = 60^\circ \text{ and } \theta_3 = 120^\circ$ suffices), and by **repeating the above procedure**, (almost) all frequency content of specimen lying within a circular region of radius twice of that governed by the OTF of optical system may be computed (Fig. (f))

→ Enabling spatial reconstruction of specimen with twice the resolution than that which is directly obtainable using the same optical system Finally, the centers of the frequency components $\tilde{S}(\mathbf{k} - \mathbf{p}_{\theta})$ and $\tilde{S}(\mathbf{k} + \mathbf{p}_{\theta})$ are **sub-pixelly shifted** by $+\mathbf{p}_{\theta}$ and $-\mathbf{p}_{\theta}$, respectively, in the reciprocal (Freq.) space (Fig. (c))



Raw SIM images

Shift pattern through 3 phases at 3 angles (total 9)

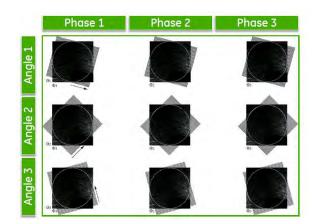


SIM – Experimental Procedure

- 1. Acquisition of raw SIM images (3X3)
- 2. System OTF determination

Intensity distribution of **hundreds of 100nm fluorescent microspheres** superimposed and averaged to obtain an **approximation of the system PSF** → **Fourier Transform** of this PSF provides an estimate of **system OTF**

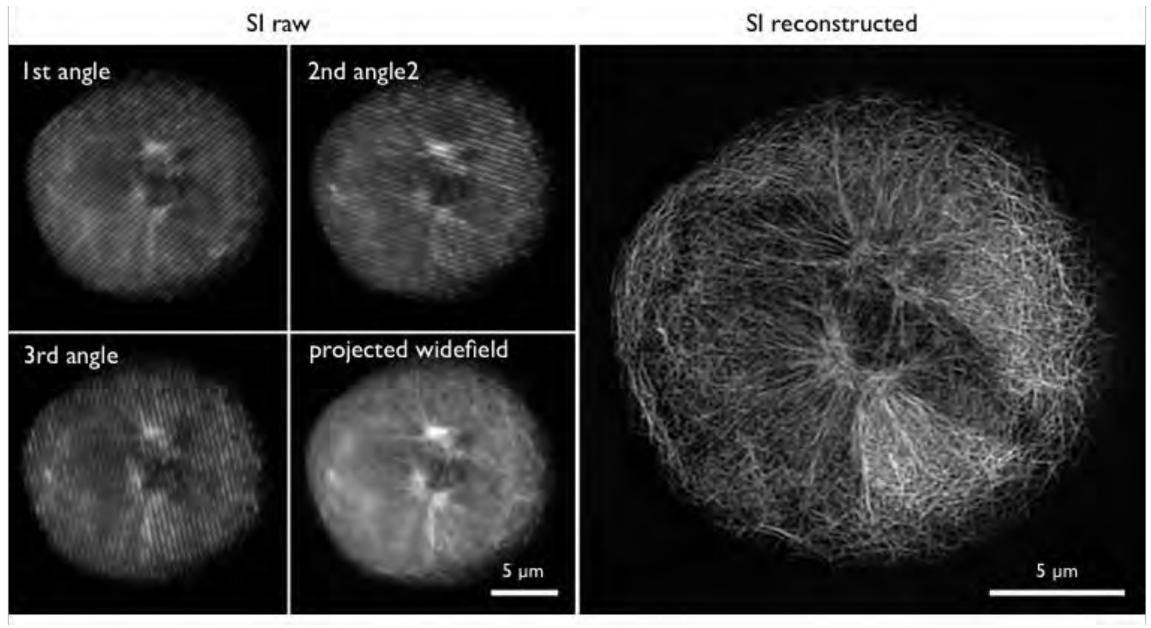
- 3. Preprocessing of raw SIM images
 - a. Intensity normalization: Raw SIM images re-scaled to have identical global mean and standard deviation (bleaching, intensity fluctuations, differences in intensity between illumination pattern angles, total intensity and motion variation)
 - b. Background removal: morphological operators, scaled substraction
 - c. Image Processing & Filtering
- 4. Reconstruction of high resolution image using SIM-RA



$\begin{bmatrix} \tilde{S}(\mathbf{k})\tilde{H}(\mathbf{k})\\ \tilde{S}(\mathbf{k}-\mathbf{p}_{\theta})\tilde{H}(\mathbf{k})\\ \tilde{S}(\mathbf{k}+\mathbf{p}_{\theta})\tilde{H}(\mathbf{k}) \end{bmatrix} = \mathbf{M}^{-1} \begin{bmatrix} \tilde{D}_{\theta,\phi_{1}}(\mathbf{k})\\ \tilde{D}_{\theta,\phi_{2}}(\mathbf{k})\\ \tilde{D}_{\theta,\phi_{3}}(\mathbf{k}) \end{bmatrix}$

 $\widetilde{H}(\mathbf{k})$: Optical system's OTF

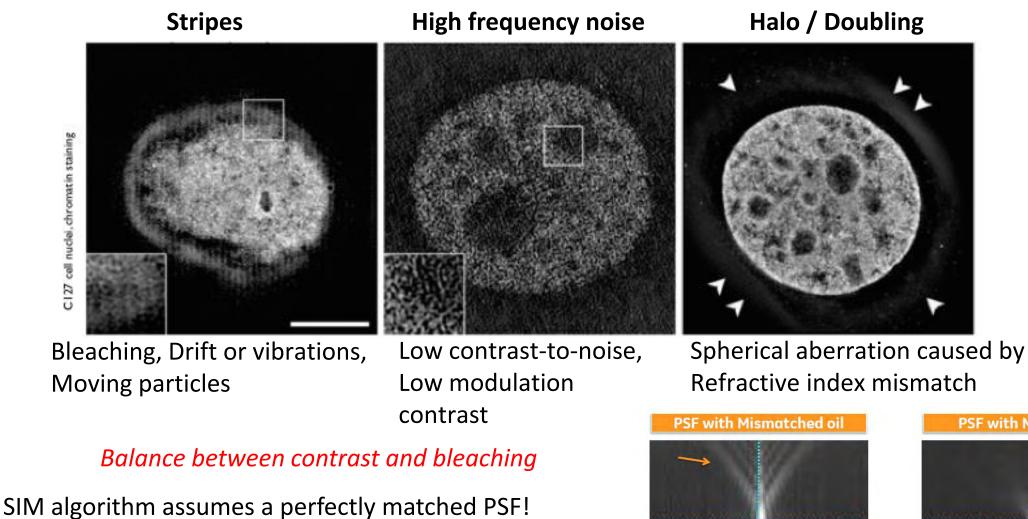
SIM – Example

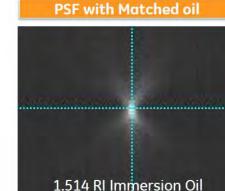


SIM – Reconstruction Artifacts

When it detects out of focus light from mismatched PSF,

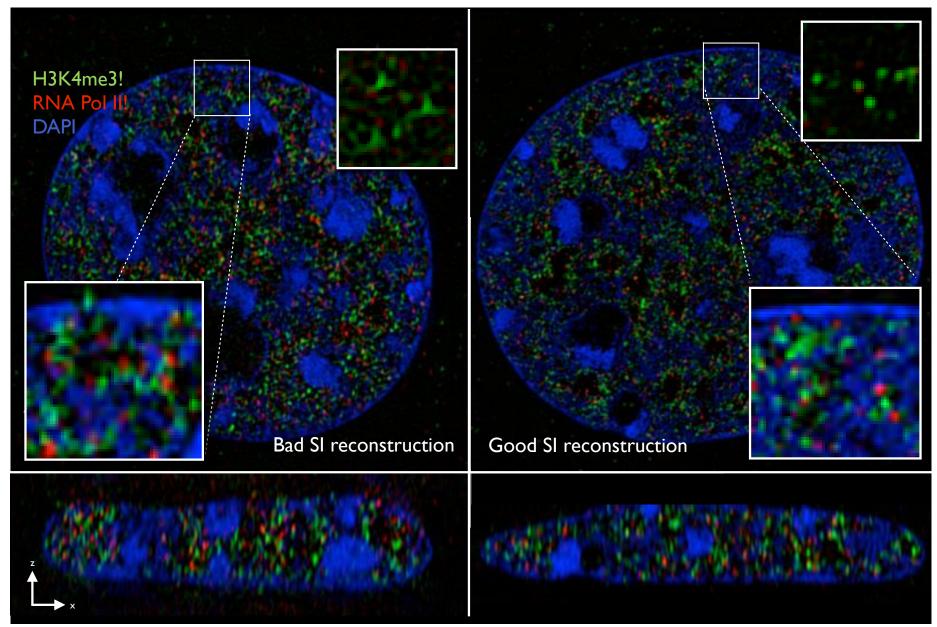
it assumes this is real signal & reconstructs it



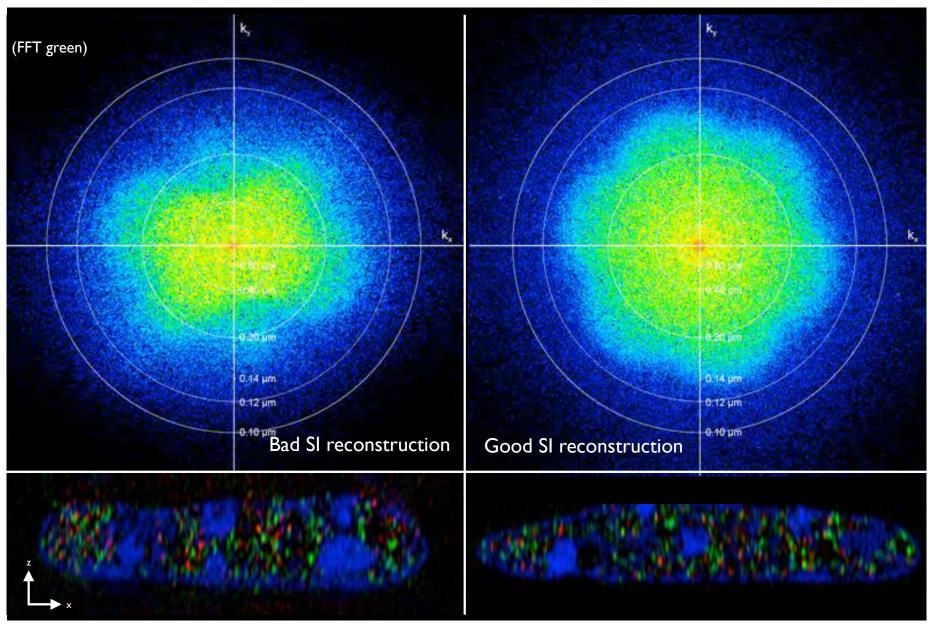


1.526 RI Immersion Oi

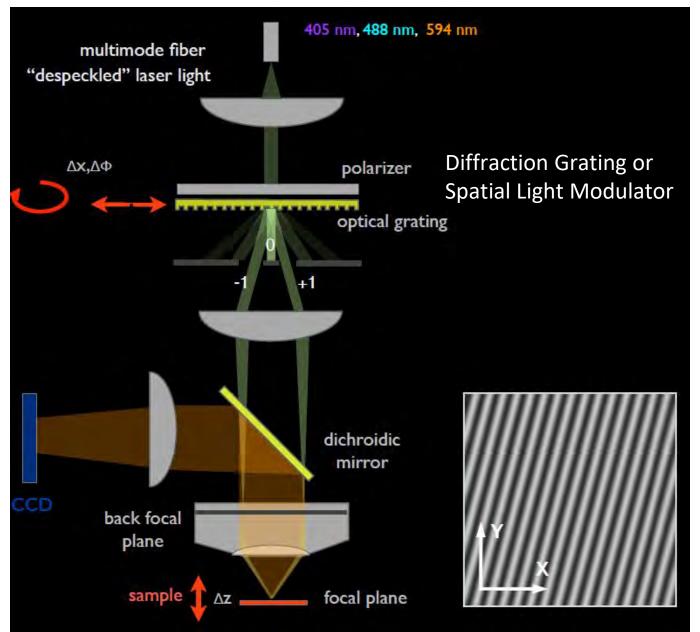
SIM – Reconstruction Artifacts \rightarrow Quality Control



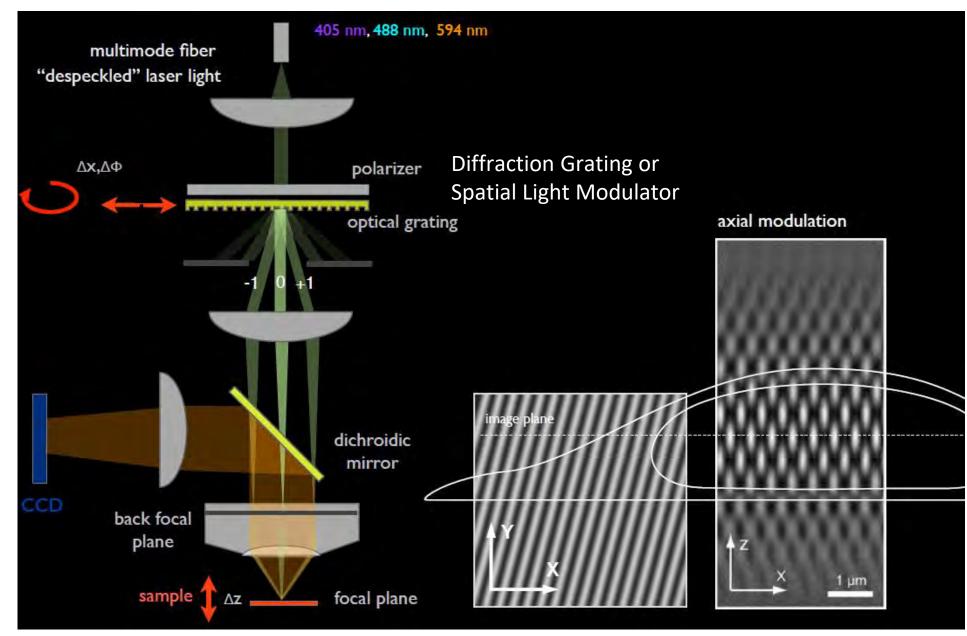
SIM – Reconstruction Artifacts \rightarrow Quality Control

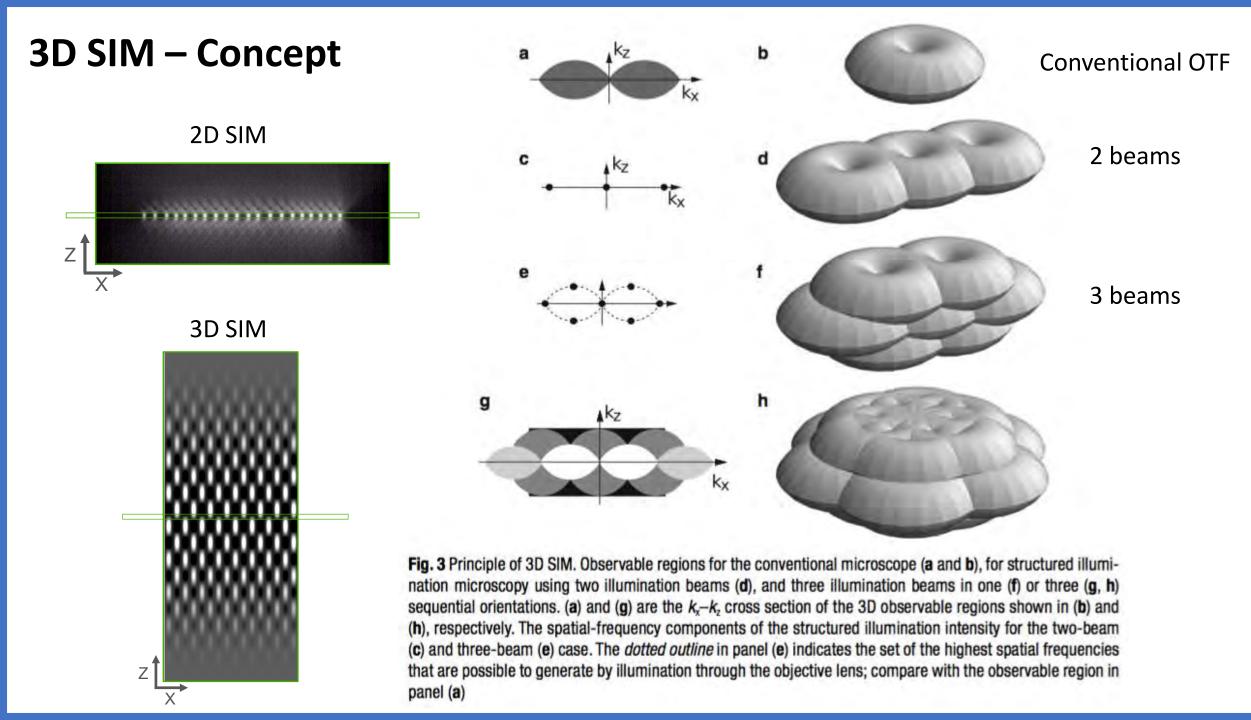


2D SIM – Optical system

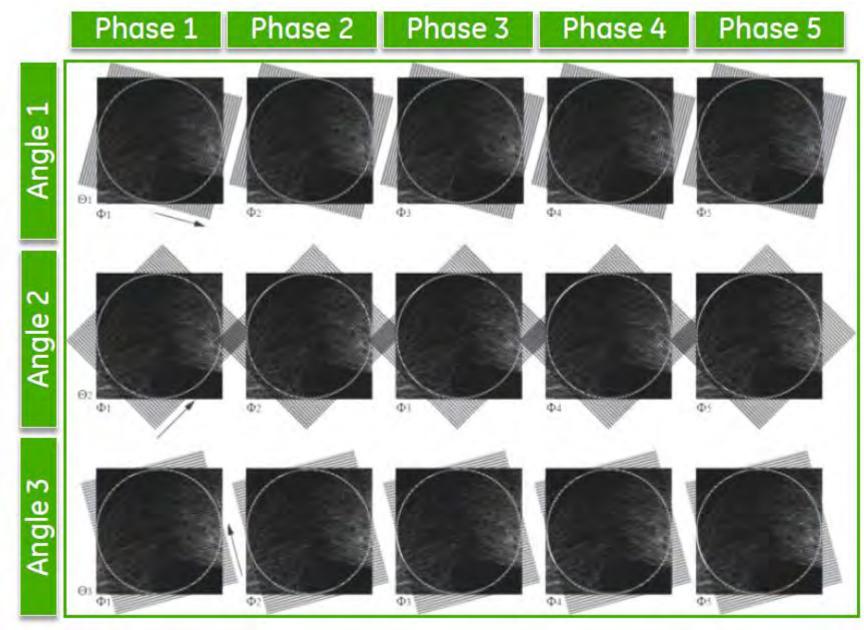


3D SIM – Optical system

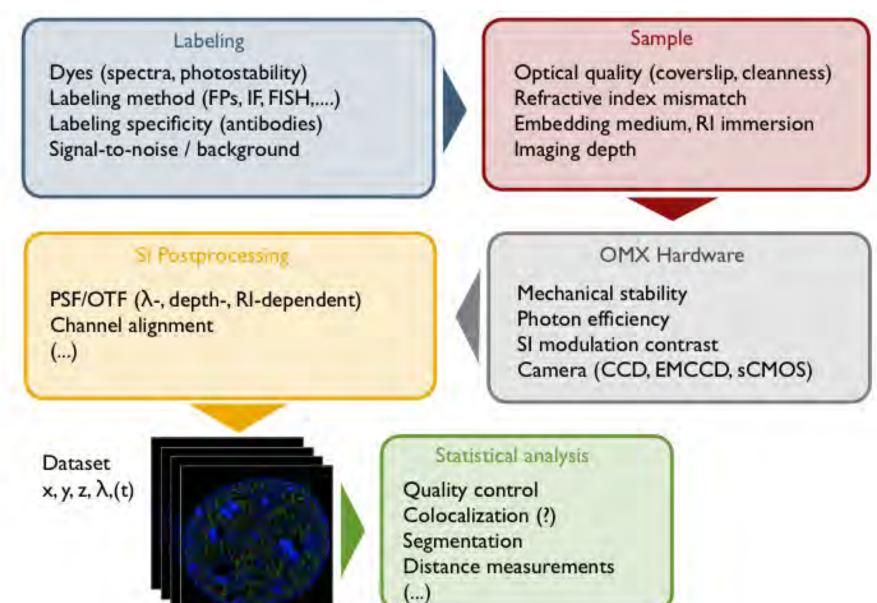




Raw 3D SIM images Shift pattern through 5 phases at 3 angles (total 15)



SIM – How to get the best image?



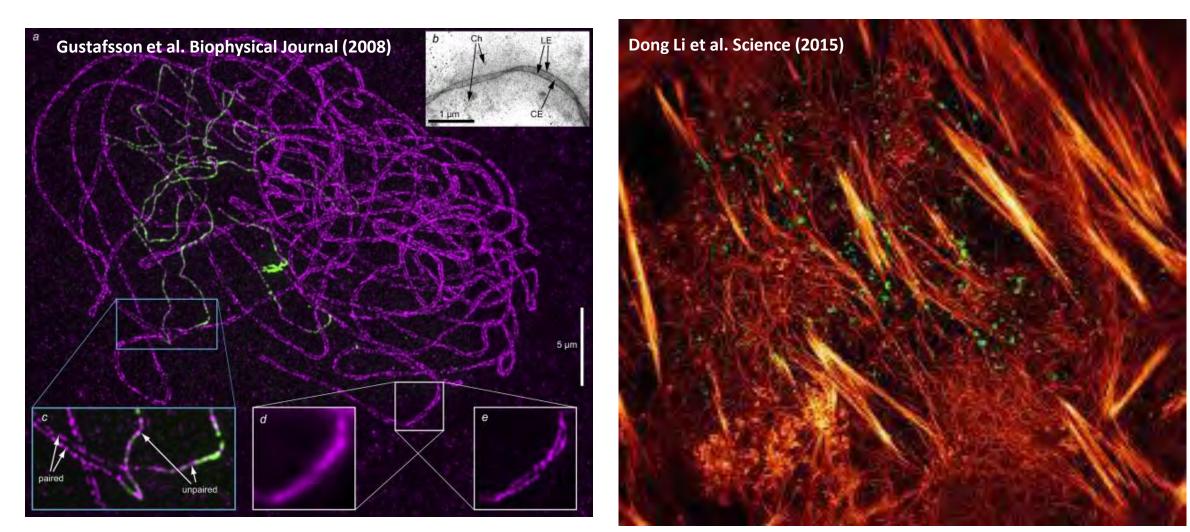
SIM – Pros & Cons

- + Multicolor, standard dyes
- + 3D with **2x resolution** in XY and Z
- + Massive **contrast enhancement** / High dynamic range
- + Optical sectioning over large volumes

- + Sensitive (EMCCD and sCMOS) and fast (SLM)
- + Fast imaging over a large field of view
- Moderate lateral resolution improvement
- Mathematical reconstruction which may lead to **artifacts**
- High requirements on sample quality and system calibration

By projecting a sinusoidal fringe pattern onto the specimen, SIM images the fringe efficiently only on the parts of the specimen that are in focus. The out-of-focus background can be removed

SIM – Experimental results



References

Gustafsson, M. G. (2000). Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. *Journal of Microscopy*, *198*(Pt 2), 82–87. http://doi.org/10.1046/j.1365-2818.2000.00710.x

Gustafsson, M. G. L., Shao, L., Carlton, P. M., Wang, C. J. R., Golubovskaya, I. N., Cande, W. Z., et al. (2008). **Threedimensional** resolution doubling in wide-field fluorescence microscopy by structured illumination. *Biophysical Journal*, *94*(12), 4957–4970. http://doi.org/10.1529/biophysj.107.120345

Schermelleh, L., Carlton, P. M., Haase, S., Shao, L., Winoto, L., Kner, P., et al. (2008). Subdiffraction Multicolor Imaging of the Nuclear Periphery with 3D Structured Illumination Microscopy. *Science*, *320*(5881), 1332–1336. http://doi.org/10.1126/science.1156947

Rego, E. H., & Shao, L. (2014). Practical Structured Illumination Microscopy. In *Cell Imaging Techniques* (Vol. 1251, pp. 175–192). New York, NY: Springer New York. http://doi.org/10.1007/978-1-4939-2080-8_10

Li, D., Shao, L., Chen, B.-C., Zhang, X., Zhang, M., Moses, B., et al. (2015). Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. *Science*, *349*(6251), aab3500–aab3500. http://doi.org/10.1126/science.aab3500

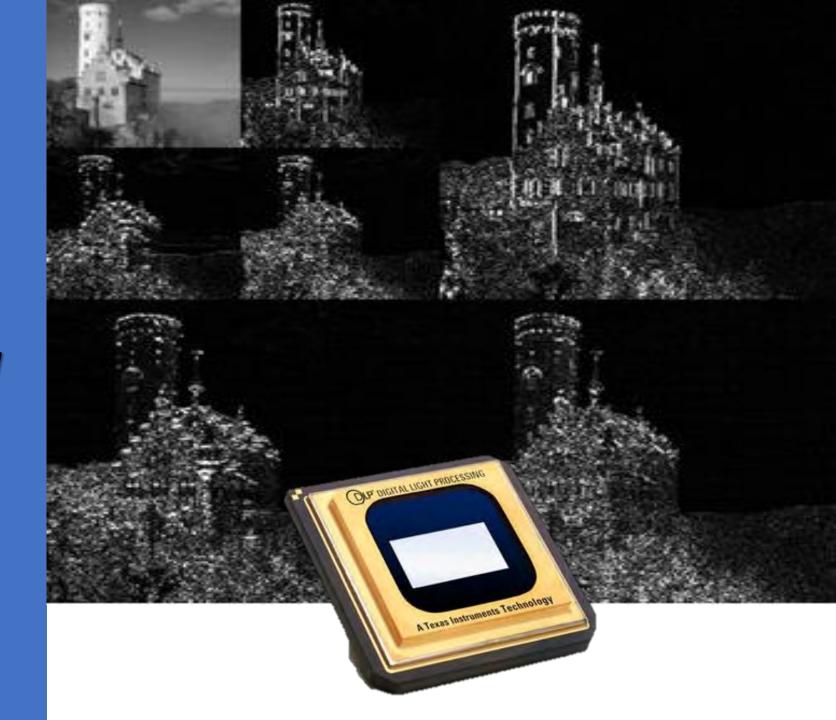
Lal, A., Shan, C., & Xi, P. (2016, February 19). Structured illumination microscopy image **reconstruction algorithm**. *arXiv.org*. http://doi.org/10.1109/JSTQE.2016.2521542

Demmerle, J., Innocent, C., North, A. J., Ball, G., Müller, M., Miron, E., et al. (2017). Strategic and practical guidelines for successful structured illumination microscopy. *Nature Protocols*, *12*(5), 988–1010. http://doi.org/10.1038/nprot.2017.019

Department of Biomedical Engineering, Technion Computational optical imaging 336547

Tutorial 5+6 – Compressed Sensing

Elias Nehme & Yoav Shechtman 24 November 2020



Nyquist Sampling Theorem

Traditional sampling method:

1D case:

If a function x(t) contains no frequencies higher than **B hertz**, it is completely determined by giving its ordinates at a series of points spaced **1/(2B) seconds** apart:

$$f_{sampling} > 2 f_{max}$$

2D case:

Pixel size is small for acquiring high frequencies, hence for **large field of view the number of pixels is large**

 \rightarrow Digital cameras in the **megapixel range**

Using **silicon** which converts photons to electrons in the **visual wavelengths**

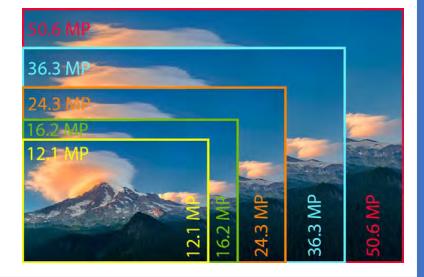


Image Compression

In a digital camera, the samples are obtained by a 2-D array of N pixel sensors on a CCD or CMOS imaging chip

We represent these samples using the vector x with elements x[n], n = 1, 2, ..., N

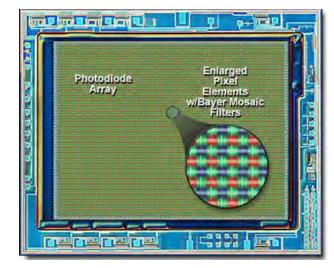
Raw image data x is often **compressed**:

 $x = \sum_{i=1}^{N} \alpha_{i} \psi_{i} \qquad \begin{cases} \psi_{i} \rbrace_{i=1}^{N} & \text{NX1 orthonormal basis vectors} \\ \alpha_{i} & \text{N coefficients} \end{cases}$ $\psi = [\psi_1 | \psi_2 | \dots | \psi_N] \qquad \alpha = \begin{bmatrix} \alpha_1 \\ \vdots \\ \vdots \\ \alpha_N \end{bmatrix} \qquad \text{Matrix form:} \\ \begin{array}{c} x = \psi \alpha \\ \mathbf{NX1 \ NXN \ NX1} \end{array}$

The aim is to find a basis ψ where the coefficient vector α is sparse → where only K<<N coefficients are nonzero

Only the values and locations of the K significant coefficients are encoded

$\rightarrow N \sim 10^6$

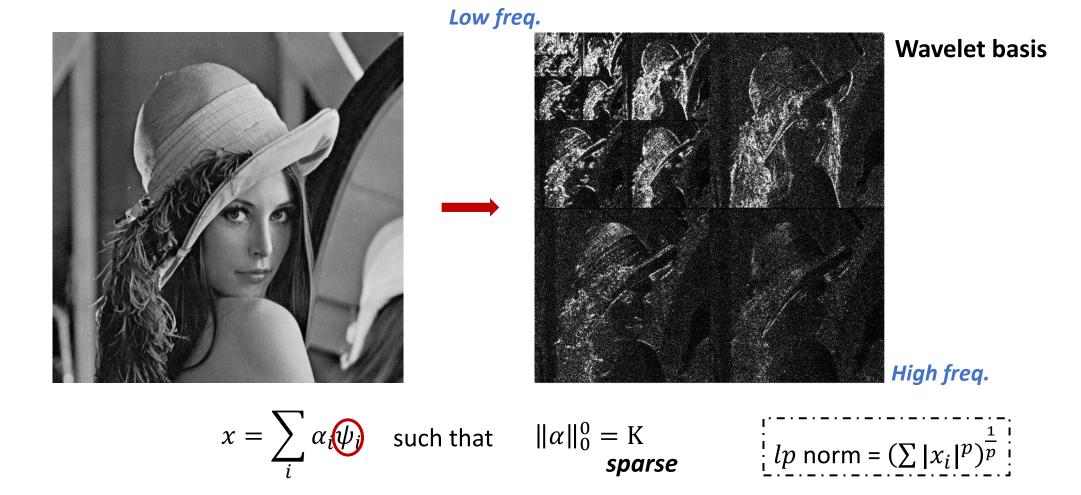


Basis vectors for **natural images**:

- Discrete cosine transform (**DCT**)
- Wavelet •
- \rightarrow On which the **JPEG and JPEG-2000** compression standards are based

Image compression – Sparse representation

Decompose the signal into a **sparse linear expansion**

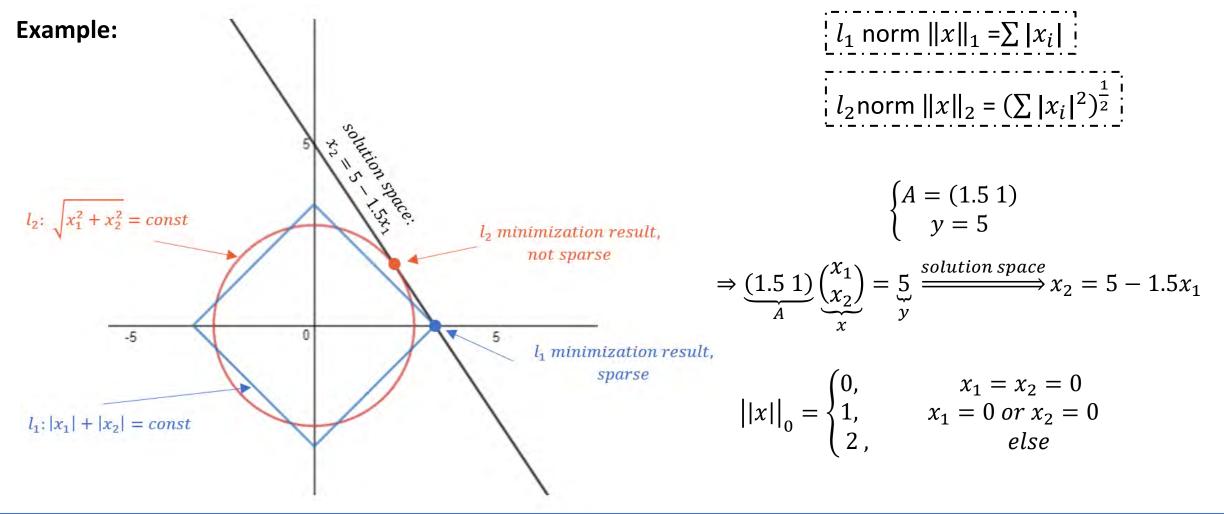


Transform the physical signal into a sparse dataset and register a fraction of the strongest coefficients

Sparsity - Reminder

How are unique **sparse representations determined from signals**?

- Iterative Greedy Algorithm (MP): l_0 -norm minimization, non-convex
- Relaxation (BP): l_1 -norm minimization, convex \rightarrow optimization problem promoting sparsity



 $|l_0 \text{ norm } ||x||_0^0 = \# \text{non-zero elements}$

Sparsity - Reminder

 $|l_1 \text{ norm } ||x||_1 = \sum |x_i|$

Relaxation (BP): l_1 -norm minimization, convex \rightarrow optimization problem promoting sparsity

$$x = \sum_{i} \alpha_{i} \psi_{j} \text{ such that } \|\alpha\|_{0}^{0} = K$$

$$sparse$$

$$x = \sum_{i} \alpha_{i} \psi_{j} \text{ such that } \|\alpha\|_{1}^{0} = K$$

$$sparse$$

Sparsity argument: minimizes the "number of non-zero coefficients"

 $\arg \min_{\alpha} \|\alpha\|_1$ such that $x = \psi \alpha$

Signal constraint: Ensures that the signal x can be recovered from the sparse coefficients α

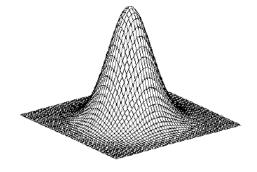
 α Sparse coefficients of x in ψ

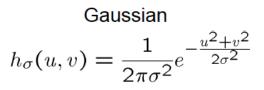
 ψ Sparsifying basis

x Signal

Another example of Sparsity – Total Variation Minimization

Gradient Magnitude

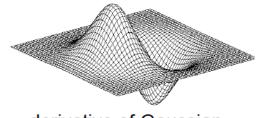






X-Derivative of Gaussian

Y-Derivative of Gaussian



derivative of Gaussian

 $rac{\partial}{\partial x}h_{\sigma}(u,v)$

Another example of Sparsity – Total Variation Minimization

If $u \in X = \mathbb{R}^{N \times N}$, the linear gradient operator ∇u is a vector in $Y = X \times X$ given by:

 $(\nabla u)_{i,j} = \left((\nabla u)_{i,j}{}^{x}, (\nabla u)_{i,j}{}^{y} \right)$

with

$$(\nabla u)_{i,j}{}^{x} = \begin{cases} u_{i+1,j} - u_{i,j} \text{ if } i < N \\ 0 & \text{ if } i = N \end{cases}$$

$$(\nabla u)_{i,j}{}^{y} = \begin{cases} u_{i,j+1} - u_{i,j} \text{ if } i < N \\ 0 & \text{ if } i = N \end{cases}$$

$$\|x\|_{1} = \sum_{i=1}^{N} |x_{i}|$$

$$\text{The total variation of } u \text{ is defined by } J(u) = \sum_{1 \le i,j \le N} |(\nabla u)_{i,j}|$$

Total Variation Minimization Problem

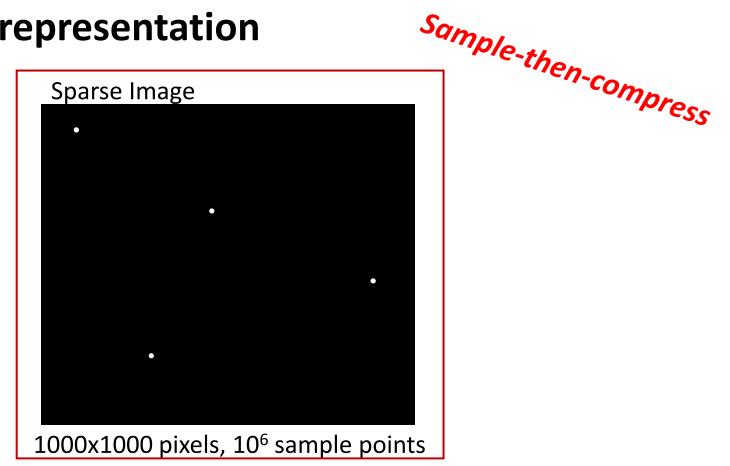
$$\operatorname{argmin}_{x} \|x\|_{TV} \quad \text{such that} \quad y = Ax \qquad \qquad \|x\|_{TV} = J(x) = \sum_{1 \le i, j \le N} \|x\|_{TV} = J(x) = \sum_{1 \le i, j \le N$$

$$\|x\|_{TV} = J(x) = \sum_{1 \le i, j \le N} \left| (\nabla x)_{i,j} \right| = \sum \sqrt{\left| D_1 x(t_1, t_2) \right|^2 + \left| D_2 x(t_1, t_2) \right|^2} \\ \|x\|_{TV} = J(x) = \sum_{1 \le i, j \le N} \left| (\nabla x)_{i,j} \right| = \|\nabla x\|_1$$

It is possible to use the sparsity assumption on the gradient of the signal and to perform l₁ minimization

Image compression – Sparse representation

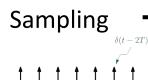
1000x1000 pixels, 10⁶ sample points



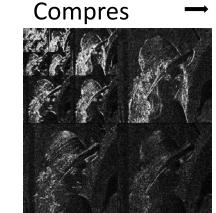
- Huge information is acquired by sampling, although most of it is a waste
- Does the image of **4 points over a black background require to sample 10⁶ points**?

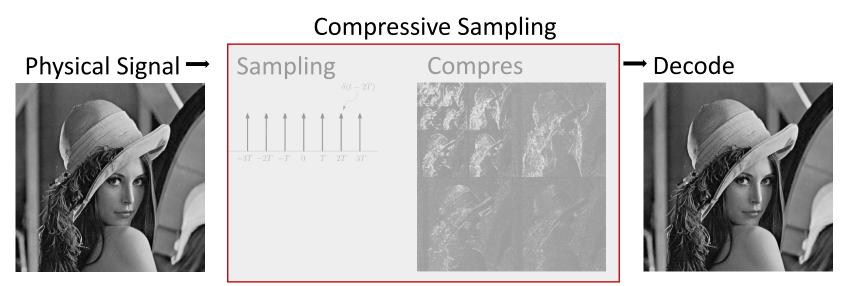
An alternative \rightarrow Compressive sampling

Compressed Sensing (CS)



 $-3T - 2T - T = 0 = T = 2T = 3^{\circ}$





CS bypasses the sampling process \rightarrow directly acquires a condensed representation

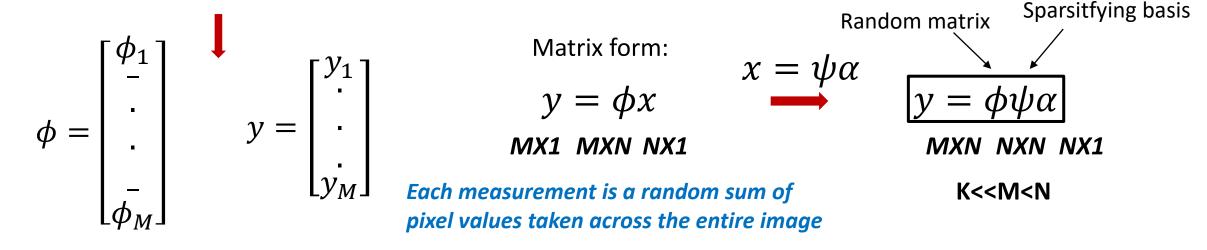
CS – Principles

Acquire directly condensed representation by using *M* < *N* linear measurements y between x and a collection of M test functions: $\{\phi_m\}_{m=1}^{M}$

To get:

Rather than measuring pixel samples of the scene

 $y[m] = \langle x, \phi_m \rangle$ \rightarrow measure inner products between the scene and a set of test functions

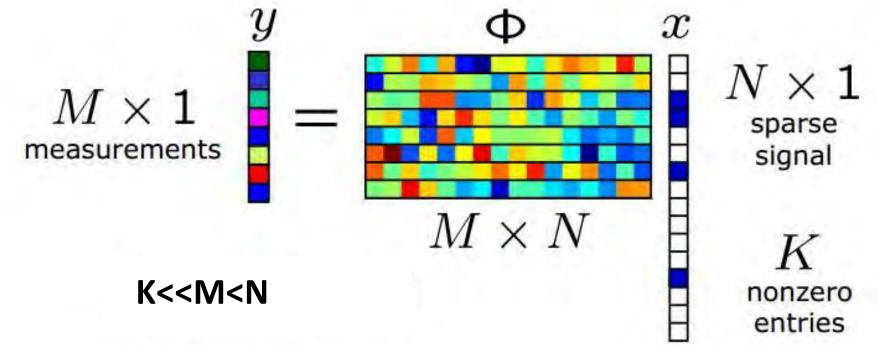


Since M < N there are **infinitely many x** such that $\phi x = y$

 \rightarrow The magic of CS is that ϕ can be designed such that sparse/compressible x can be recovered from the measurements y

CS – **Principles**

- Assume the physical signal x is sparse
- Records M different linear combinations of all values of x



Recover *x* from *y*

- Nyquist Theorem: M = N and $\Phi = I$ is trivial
- Compressed Sensing Theory: M < N if x is sparse (K nonzero entries). How?

 $\arg\min_{x} ||x||_1$ such that $\Phi x = y$

CS Theorem

 Candes, Romberg and Tao showed that one could almost always recover the K-sparse signal x exactly by solving the convex problem:

$$\arg\min_{x} \|x\|_{1} \quad \text{such that} \quad \Phi x = y \qquad \qquad \|\|x\|_{0}^{0} \le \frac{\sigma_{spark}}{2} \quad \|\|x\|_{0}^{0} \le \frac{1}{2} \left(1 + \frac{1}{\mu}\right)$$

Under the condition that *Ф* **obeys the "restricted isometry hypothesis"**. *Spark, Mutual coherence*

• Alternatively, If the *K*-sparse signal is $\alpha = \Psi^T x$:

$$\arg\min_{\alpha} \|\alpha\|_1$$
 such that $\Phi \Psi \alpha = y$

When the measurement basis Φ cannot sparsely represent the elements of the sparsifying basis Ψ (x is sparse in a known orthorgonal system Ψ) – a condition known as *incoherence* of the two bases – and the number of measurements *M* is large enough, then it is possible to recover the signal x from the measurements y

$$M \ge \text{Const} \cdot \mu^2 \cdot K \cdot \log(N)$$

Coherence

$$\mu = \max_{i,j} |\langle \Phi_i, \psi_j \rangle|$$

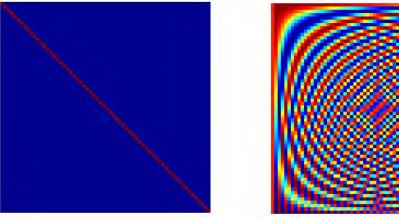
Candès, E.J. IEEE Trans. Inform. Theory, 2004

Candes, E.J., Romberg, J., Tao, T. IEEE Trans. Inform. Theory 52 (2006), 489–509.

Incoherent Bases

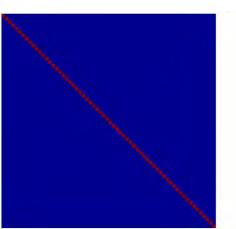
• Spikes and sines (Fourier)

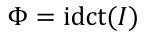
 $\Psi = I$

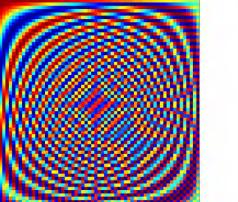


• Spikes and "random basis"

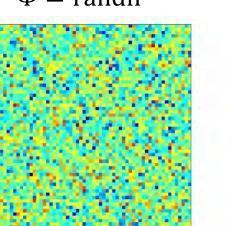
 $\Psi = I$

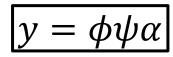






 $\Phi = randn$

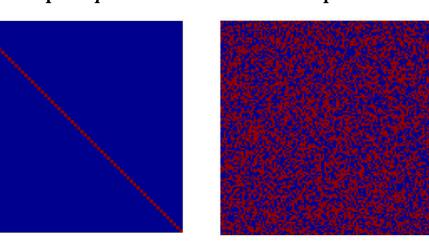




MXN NXN NX1

K<<M<N

• Spikes and "random sequences" $\Psi = I$ Φ



Incoherent Bases – Random matrices

• Spikes and sines (Fourier)

 $\Psi = I$ $\Phi = idct(I)$

Fourier measurements. Φ is a partial Fourier matrix obtained by selecting M rows uniformly at random and renormalizing the columns (unit-normed). Then Candès and Tao showed that Φ obeys the restricted isometry property with overwhelming probability if: $K \leq C \cdot M/(\log N)^6$

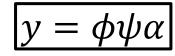
• Spikes and "random basis"

 $\Psi = I$ $\Phi = randn$

Gaussian measurements. The entries of matrix Φ are independently sampled from N(0, 1/M)Then if:

 $K \leq C \cdot M / \log(N/M)$

 $\mathbf{\dot{h}} \Phi$ obeys the restricted isometry property



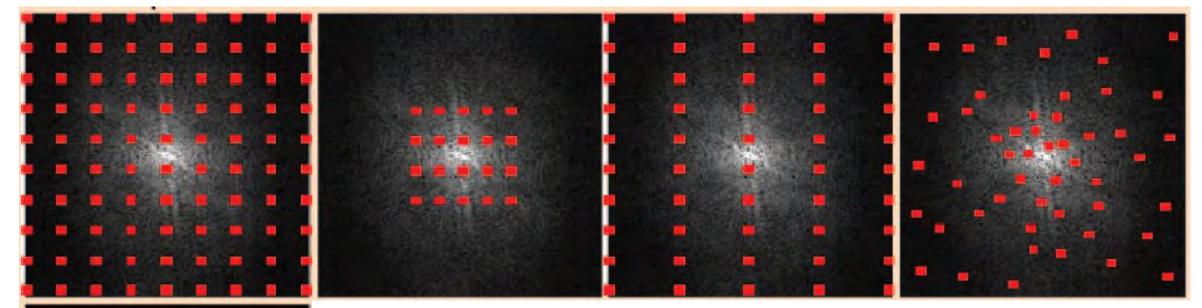
MXN NXN NX1

K<<M<N

Spikes and "random sequences" $\Psi = I$ Φ *Binary measurements.* The entries of matrix Φ are independently sampled from the symmetric *Bernoulli distribution* P ($\Phi_{ki} = \pm 1/M$) = 1/2. Then if: $K \leq C \cdot M/ \log(N/M)$ Φ obeys the restricted isometry property

CS places most of its computational complexity in the recovery system → Often has more substantial computational resources than the measurement system

Incoherent Sampling – Partial Fourier

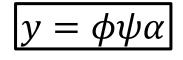


Lustig, M. IEEE Sig. Proc. Magazine, 2008

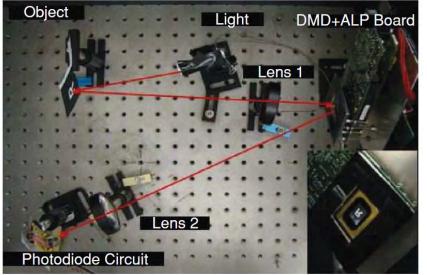
Computes random linear measurements of the scene under view

The camera design **reduces the required size, complexity, and cost of the photon detector array down to a single unit** → Enables the use of **exotic detectors** that would be impossible in a conventional digital camera

Photomultiplier tube or an avalanche photodiode for low-light (photon-limited) imaging



MXN NXN NX1 K<<M<N



Digital micromirror device (DMD)

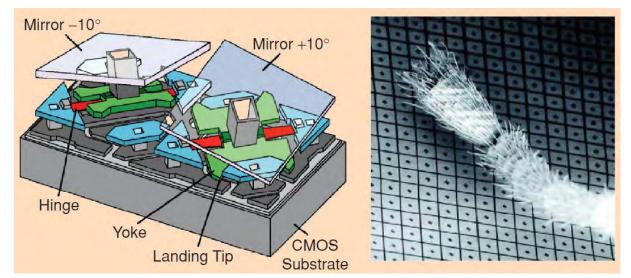
Spatial light modulator (**SLM**) modulates the intensity (or phase) of a light beam according to a control signal

DMD – Reflective SLM that selectively redirects parts of the light beam

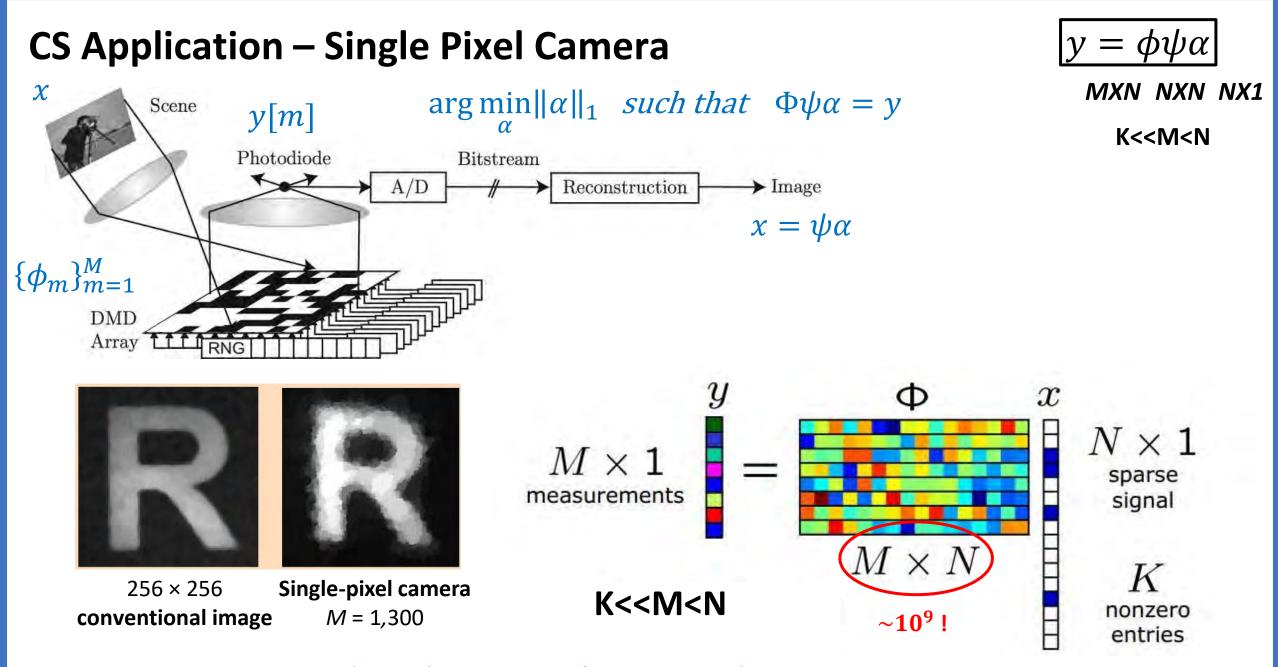
The DMD consists of an **array of bacterium-sized**, **electrostatically actuated micromirrors**

Each mirror rotates about a hinge and can be **positioned in one of two states** (+10°and –10° from horizontal) according to which bit is loaded

Light falling on the DMD can be **reflected in two directions depending on the orientation of the mirrors** (to get "on" and "off" states)



Duarte et al. IEEE signal processing magazine (2008).

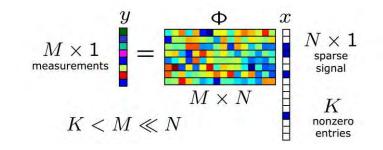


The implementation of matrix Φ on the DMD requires a large amount of RAM memory

Single Pixel Camera – MATLAB simulation

Total Variation Minimization

 $\arg\min_{x} ||x||_{TV}$ such that $\Phi x = y$



We need a fast and reversible transformation which does not require to construct a matrix ${f \Phi}$ Random Gaussian ensemble do not exhibit such a property although "randomness" is highly desirable for achieving maximum incoherence with the sparsifying matrix (equivalently satisfying for relatively large K-sparse signals, the restricted isometry property)

Fast and reversible transformation: **FFT _____ real-valued scrambled** Randomness: scrambling operator

Fourier ensemble

1. Randomly permute the samples of x

2. FFT

- 3. Sample randomly $\frac{M}{2} \ll N$ fourier coefficients
- 4. Separate $\frac{M}{2}$ real and $\frac{M}{2}$ imaginary part (to have real values)

For randomness to the FFT (incoherence)

Actual DMD only real values are implemented (sine pattern and then cosine pattern)

Note: Pay attention to **normalization**!

MATLAB functions

Minimization Algorithms

I1eq_pd: solves the Basis Pursuit problem (P_1) I1qc_logbarrier: solves quadratically constrained l_1 minimization (P_2)

tveq_logbarrier: solves equality constraint TV minimization (TV_1) tvqc_logbarrier: solves quadratically constrainted TV minimization (TV_2) Least Squares $arg \min_{x} ||y - Ax||_{2}$ $\rightarrow x = (A^{T}A)^{-1}A^{T}y$ $x = A \setminus y \text{, only rank(A) non zero coefficients}$ $x = pinv(A) * y \text{, min} ||x||_{2}$

 $(TV_1) \arg \min_x TV(x)$ such that Ax = y $(P_1) \arg \min_x ||x||_1$ such that Ax = y $(TV_2) \arg \min_x TV(x)$ such that $||Ax - y||_2 \le \epsilon$ $(P_2) \arg \min_x ||x||_1$ such that $||Ax - y||_2 \le \epsilon$ When the measurements y are corrupted by noise

Randomized constructions

rand: pseudorandom values drawn from the standard uniform distribution on (0,1) randn: pseudorandom values drawn from the standard normal distribution randperm: random permutation of integers

Signal Processing

fft: applies the one dimensional fast fourier transform

And your most valued friend

help *name*: displays the help for the functionality specified by *name*, such as a function, operator, symbol, method, class, or toolbox doc *name*: displays the reference page for *name* in the Help browser.

Dictionary Learning

Question: What ψ is the best to represent our signal $x = \psi \alpha$?

$$\arg\min_{\alpha} \|\alpha\|_1 \quad such that \quad \Phi \psi \alpha = y$$

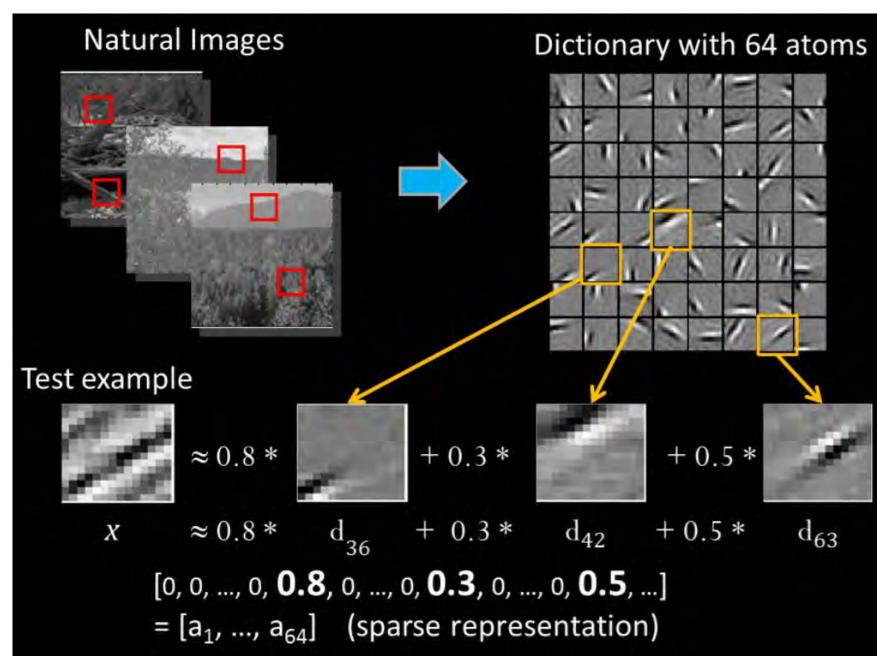
Answer: Optimize ψ and α jointly from the provided data $y \triangleq$ Learn the dictionary ψ

$$\arg\min_{\psi,\alpha} \|\alpha\|_1 \quad such \ that \quad ||y - \Phi\psi\alpha||_2^2 \le \epsilon$$

Numerous algorithms, with the most prominent one being "K-SVD" invented by Michael Elad, Freddy Bruckstein and their student Michal Aharon (CS department). Main Idea: alternate between 2 steps:

- Sparse Coding (MP or BP)
- Dictionary Update

Dictionary Learning

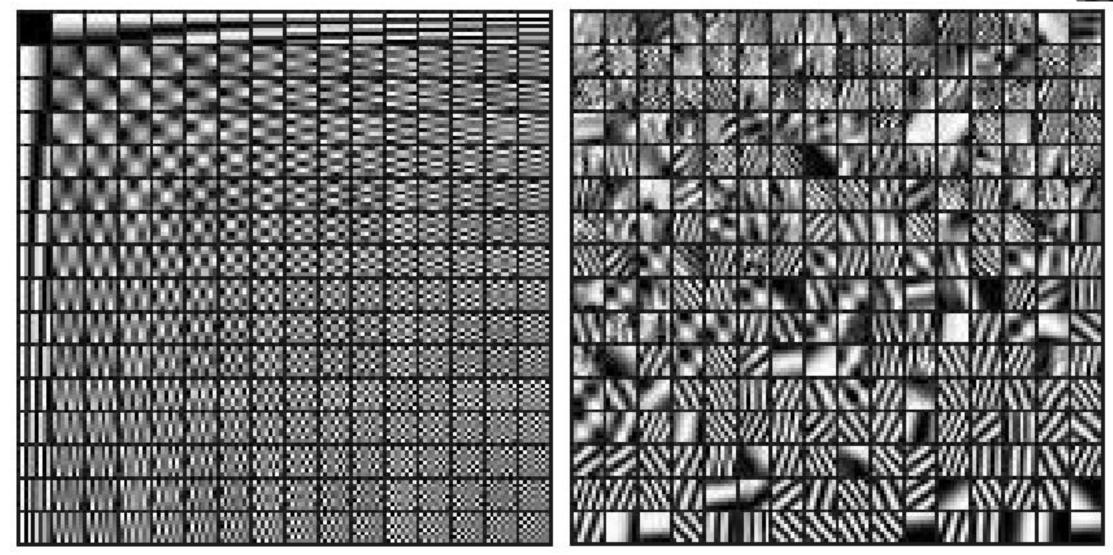


Andrew Ng, ECCV 2010 Tutorial

Dictionary Learning: Image "Barbara"

DCT

Learned Dictionary



Aharon M., IEEE Trans. Image Proc., 2006

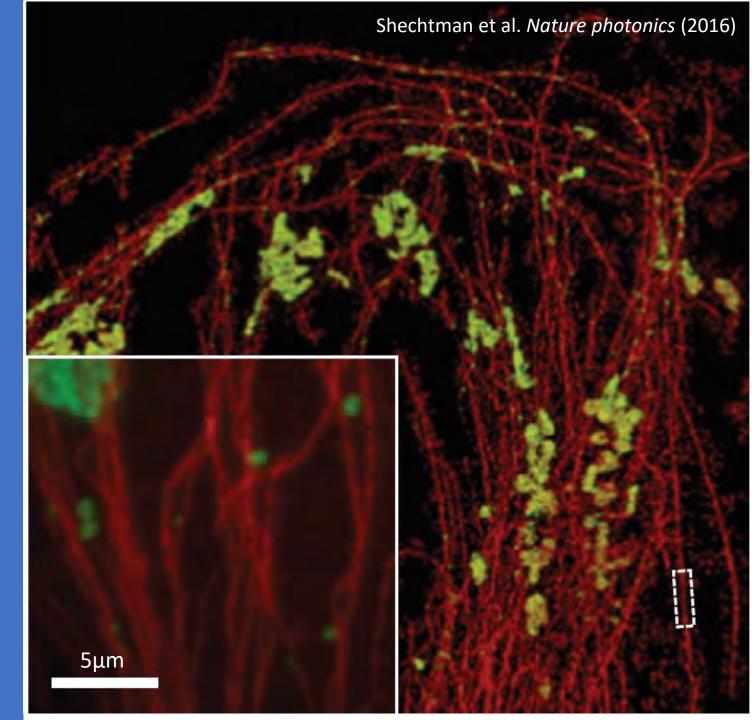
Department of Biomedical Engineering, Technion Computational optical imaging 336547

Tutorial 7 – Localization Microscopy

Elias Nehme & Yoav

Shechtman

8 December 2020



Super-Resolution Localization Microscopy Concept **Resolving close fluorophores:** For visible light: 1. Switchable fluorophores -Lateral resolution~200nm 2. Powerful localization Stochastic activation and Super-resolution image Fluorophorestoo algorithms reconstructed from localizations dose to resolve. localization of individual molecules Diffraction-limited image of actin What determines the dimensions of Pixel Data the localized data Gaussian fit point i.e. precision? STORM image of actin μm What determines the accuracy with which the data STORM image of actin & spectrin point is localized? Localized Data Point 500 nm

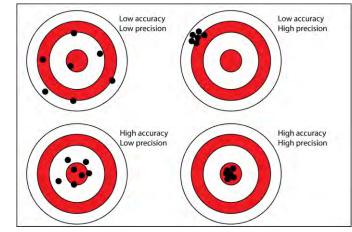
Probing biology at the nm scale via fluorescence

Localization Precision and Accuracy

Localization Precision: The spread of the estimates around its mean value

$$\sigma_x = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_{p,i} - \bar{x}_p)^2}$$
 FWHM_x = $2\sigma_x \sqrt{2 \ln 2}$

 x_p : true position of a particle $x_{p,i}$: estimate *i* of x_p *n*: number of estimates \bar{x}_p : mean of all estimates $x_{p,i}$

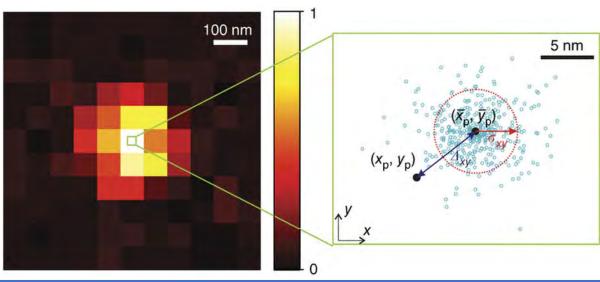


Localization Accuracy: The deviation of the mean measured position coordinates from the true position coordinate

$$\Delta_x = \bar{x}_p - x_p$$

 $\Delta_x = 0$ for **an unbiased estimation** \rightarrow Accurate *Calculated only when the true position is known*

Experimentally recorded image of a single emitter:



Blue circles \rightarrow experimentally determined position estimates from different images of the same emitter (x_p, y_p) – real particle position (\bar{x}_p, \bar{y}_p) – average of the estimated positions $\sigma_{xy} = 0.5 \times \sqrt{\sigma_x^2 + \sigma_y^2}$ – lateral localization precision $\Delta_{xy} = \sqrt{\Delta_x^2 + \Delta_y^2}$ – lateral localization accuracy

Localization Precision and Accuracy

Localization Accuracy

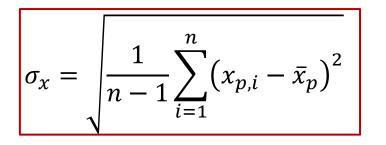
• The algorithm estimating x_p must be **unbiased**

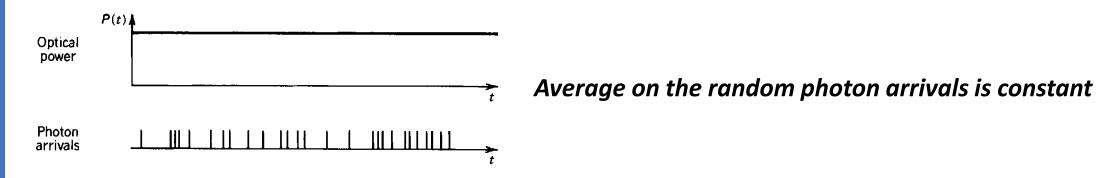
$$\Delta_x = \bar{x}_p - x_p$$

- Insensitive to shot noise (does not involve individual measurements $x_{p,i}$), sensitive to background, spatial photon distribution, detector and sample properties
- No fundamental limit on the achievable localization accuracy

Localization Precision

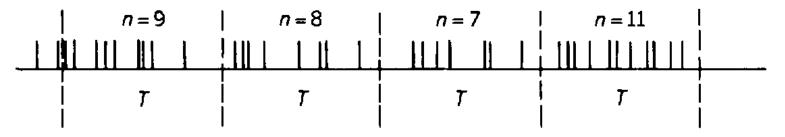
• Coherent light has a constant optical power





Localization Precision and Accuracy

Random arrival of photons in a light beam of power P within intervals of duration T. Although the optical power is constant the number *n* of photons arriving within each interval is random.



Photon registration: Poisson distribution

$$p(n) = \frac{\overline{n}^n e^{-\overline{n}}}{n!}, n = 0, 1, 2, \dots$$

 $\begin{cases} \text{mean: } \overline{n} \\ \text{variance: } \sigma_n^2 = \overline{n} \end{cases}$

The **number of photons** arriving in a certain time interval follows a **Poisson distribution**, the standard deviation of which is known as **shot noise**

e.g. the presence of $\bar{n} = 100$ photons is accompanied by an inaccuracy of $\pm \sigma_n = 10$ photons

Localization Precision

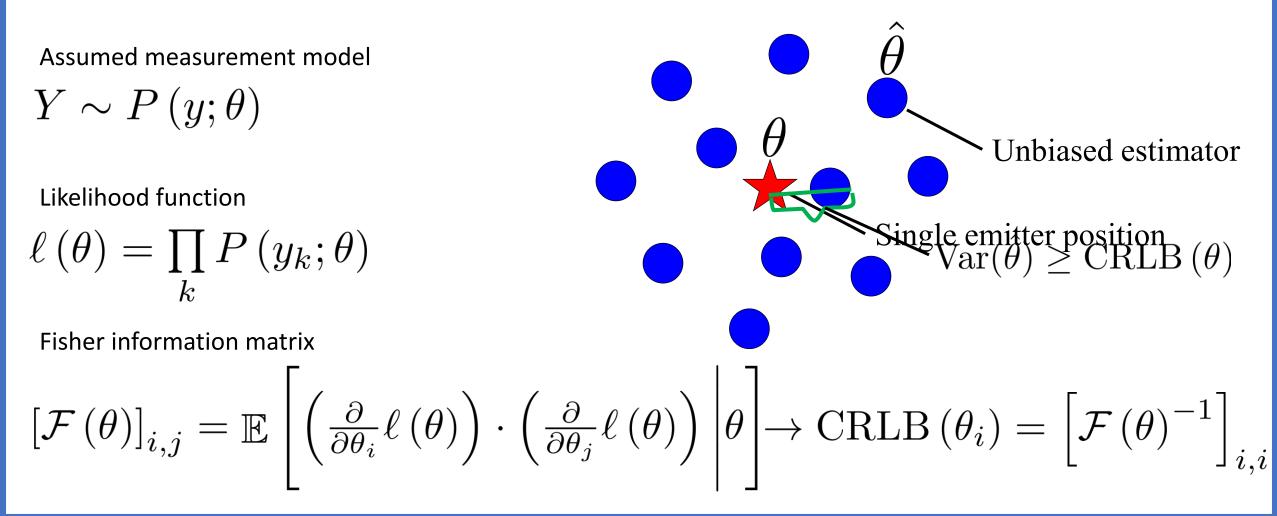
Due to shot noise *each image will have a slightly different center* \rightarrow the estimated fluorophore's position will give *different results for each image*

Precision is affected by <u>number of photons</u>, <u>emission profile</u> of particles (fixed dipole, translation movement, diffraction of the light microscope), <u>detector and sample properties</u>

Minimum Variance Unbiased Estimation (MVUE)

Cramer-Rao Lower Bound

The best localization precision theoretically achievable is given by the square root of the Cramér-Rao lower bound (CRLB), which is defined as the smallest possible variance any unbiased estimation algorithm can have



Localization Precision – CRLB

Cramer-Rao Lower Bound

The best localization precision theoretically achievable is given by the square root of the Cramér-Rao lower bound (CRLB), which is defined as the smallest possible variance any unbiased estimation algorithm can have

Spatial distribution of photon positions that is dictated by the **emission profile of the particle** in combination with the light diffraction in the microscope

$$f(x, y; \theta = [x_0, y_0])$$

Assuming shot noise, each pixel measurement will be Poisson distributed:

$$Y_{r,k} \sim \mathcal{P}\left(\lambda = f\left(x_r, y_k; \theta = [x_0, y_0]\right)\right)$$

Resulting Fisher information matrix elements

$$\left[\mathcal{F}\left(\theta\right)\right]_{i,j} = \sum_{r} \sum_{k} \frac{1}{f(x_r, y_k; \theta = [x_0, y_0])} \frac{\partial f}{\partial \theta_i} |_{(x_r, y_k)} \cdot \frac{\partial f}{\partial \theta_j} |_{(x_r, y_k)}, \quad 1 \le i, j \le 2$$

Localization Precision – CRLB

Cramer-Rao Lower Bound

The best localization precision theoretically achievable is given by the square root of the Cramér-Rao lower bound (CRLB), which is defined as the smallest possible variance any unbiased estimation algorithm can have

Isotropic emitter in or close to the focal plane, the PSF is approximately Gaussian:

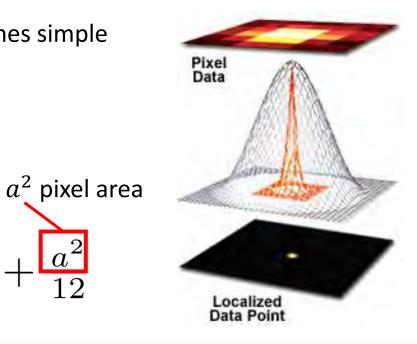
$$f(x, y; \theta = [x_0, y_0]) \approx \frac{N}{2\pi\sigma^2} e^{-\frac{1}{2\sigma^2} \left[(x - x_0)^2 + (y - y_0)^2 \right]} + b$$

Considering only shot noise (b = 0), the precision limit becomes simple

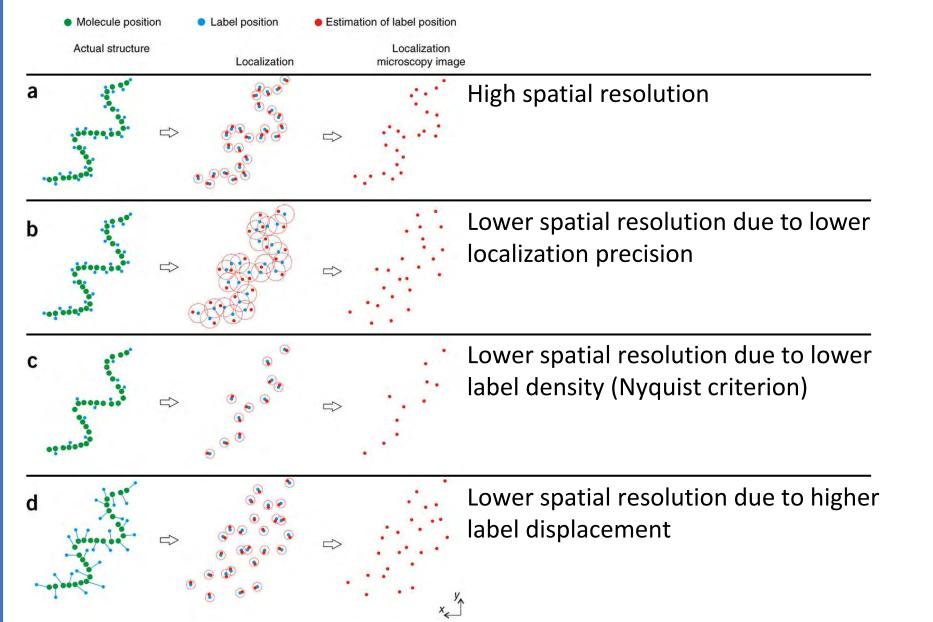
$$\sigma_{\hat{x}_0} \ge \frac{\sigma}{\sqrt{N}}$$

Considering also **background and pixelization**:

$$\sigma_{\hat{x}_0} \ge \sqrt{\frac{\sigma_a^2}{N} \left(\frac{9}{16} + \frac{8\pi\sigma_a^2 b^2}{Na^2}\right)}, \ \sigma_a^2 = \sigma^2 + \frac{a^2}{12}$$



Spatial Resolution vs Localization Precision and Accuracy



Computing Localization precision and accuracy of an algorithm is **not the same** as determining the resolution of an image produced by a localization algorithm

The art of localizing emitters

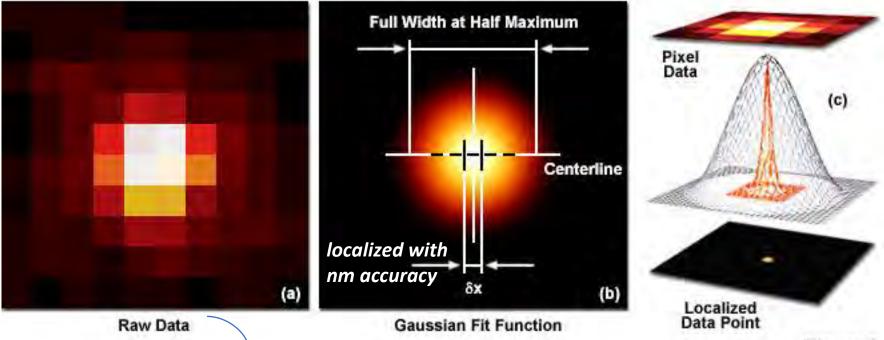


Figure 3

Mathematically treated to fit a two-dimensional Gaussian function and localized with nanometer accuracy

Sub-pixel 2D localization of molecules:

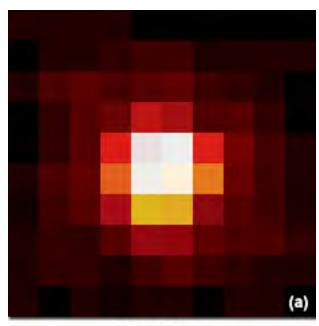
- Center of Gravity (CoG)
- Least Squares (LS)
- Weighted Least Squares (WLS)
- Maximum Likelihood Estimation (MLE)

Center-of-Gravity (CoG)

Mean pixel positions weighted by the intensity of the image data:

$$\hat{x}_0 = \frac{\sum_{x,y\in D} x\tilde{I}(x,y)}{\sum_{x,y\in D} \tilde{I}(x,y)}, \ \hat{y}_0 = \frac{\sum_{x,y\in D} y\tilde{I}(x,y)}{\sum_{x,y\in D} \tilde{I}(x,y)}$$

- Does not require **any prior knowledge**
- **Very fast** (non-iterative algorithm)
- Does not estimate the intensity or imaged size of molecules
- Sensitive to noise
- Biased estimator in the presence of background (towards center for uniform background)
 - → If the image profile is Gaussian, the center of gravity estimator is a maximum likelihood estimator



Raw Data

Fitting point-spread-function (PSF) models

A single molecule emitter is treated as an incoherent point source and is described by the PSF

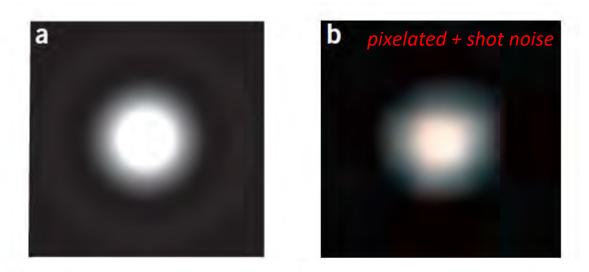
PSF - proportional to **the average number of photons** at a given position relative to the source

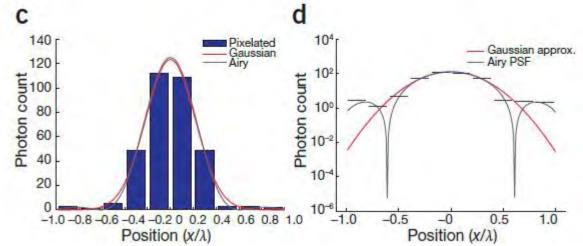
Airy PSF is tedious for many practical calculations \rightarrow PSF of an isotropic source is often approximated as a Gaussian function

Gaussian approximation gives useful and reasonably accurate results for **focused images of fluorophores**

In the tails the approximation can break down as a Gaussian decays more rapidly than many PSFs \rightarrow Poses issues in minimizing discrepancies between the model and the data in the edges of the image.

Solution: Using a small ROI (tradeoff it discards useful information)





Fitting point-spread function (PSF) models

Gaussian function \approx real PSF of a microscope (due to pixelation and noise)

- Simplicity
- Robustness
- Computation efficiency

Symmetric 2D Gaussian function

$$\text{PSF}_G(x, y | \boldsymbol{\theta}) = \frac{\theta_N}{2\pi\theta_\sigma^2} e^{-\frac{\left(x - \theta_x^2\right)^2 + \left(y - \theta_y^2\right)^2}{2\theta_\sigma^2}} + \theta_k$$

$$\boldsymbol{\theta} = \left[\theta_{x}, \theta_{y}, \theta_{\sigma}, \theta_{N}, \theta_{b}\right]$$

- θ_{χ} sub-pixel molecular x-coordinate
- θ_y sub-pixel molecular y-coordinate
- θ_σ imaged size of the molecule
- θ_N total number of photons emitted by the molecule
- θ_b background offset

Expected photon count at the integer pixel position (x, y) for the parameters $\boldsymbol{\theta} = [\theta_x, \theta_y, \theta_\sigma, \theta_N, \theta_b]$

Integrated form of a symmetric 2D Gaussian function

$$\mathsf{PSF}_G(x, y | \boldsymbol{\theta}) = \theta_N E_x E_y + \theta_b$$

Considers the **discrete nature of pixels present in digital cameras** assuming a uniform distribution of pixels with unit size

The parameters are varied to find the values that give the best 'fit' to the data

$$E_x = \frac{1}{2} \operatorname{erf}\left(\frac{x - \theta_x + \frac{1}{2}}{\sqrt{2}\theta_\sigma}\right) - \frac{1}{2} \operatorname{erf}\left(\frac{x - \theta_x - \frac{1}{2}}{\sqrt{2}\theta_\sigma}\right)$$

as;
$$E_{y} = \frac{1}{2} \operatorname{erf}\left(\frac{y - \theta_{y} + \frac{1}{2}}{\sqrt{2}\theta_{\sigma}}\right) - \frac{1}{2} \operatorname{erf}\left(\frac{y - \theta_{y} - \frac{1}{2}}{\sqrt{2}\theta_{\sigma}}\right)$$

Least-squares methods

Optimization problem typically solved by the Levenberg-Marquadt algorithm

 $\widehat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \chi^{2}(\boldsymbol{\theta}|D) = \arg\min_{\boldsymbol{\theta}} \sum_{x,y \in D} w(\widetilde{l}(x,y) - PSF(x,y|\boldsymbol{\theta}))^{2} \qquad \boldsymbol{\theta} = [\theta_{x}, \theta_{y}, \theta_{\sigma}, \theta_{N}, \theta_{b}]$ $\underbrace{\text{least-squares:}}_{All \text{ measurements are equally significant}} w = 1 \qquad \theta_{x} \text{ sub-pixel molecular x-coordinate}$ $\underbrace{\text{weighted least-squares:}}_{Considers the uncertainty in the number of detected} photons \qquad w = 1/PSF(x,y|\boldsymbol{\theta})$ $\underbrace{\text{wone over expected photon count}}_{x,y \in D} w(\widetilde{l}(x,y) - PSF(x,y|\boldsymbol{\theta}))^{2} \qquad \boldsymbol{\theta} = [\theta_{x}, \theta_{y}, \theta_{\sigma}, \theta_{N}, \theta_{b}]$

- No detailed knowledge (weighted) or none (w = 1) required on noise
- Weighting gives extra importance to the tails of the PSF criteria often used to choose between LS and WLS
 in low background conditions (misspecifying the tail is less of an issue when there is substantial background)
- Weighting should be done with respect to the expected variance (i.e. *the model prediction*)
 If the noise can be approximated as Gaussian, the weighted least squares algorithm is a maximum likelihood estimator
 For high-background fluorescence (>10 photons/pixel) OR high photon count

Maximum-Likelihood Estimator

Likelihood of the parameters heta

photons are usually independent of each $L(\theta|D) = \prod_{x,y\in D} \frac{PSF(x,y|\theta)^{\tilde{I}(x,y)}e^{-PSF(x,y|\theta)}}{\tilde{I}(x,y)!}$

Photon registration: Poisson distribution PSF $(x, y | \theta)$ expected photon count $\tilde{I}(x, y)$ observed photon count

Log Likelihood – Optimization problem typically solved by the Nelder-Mead method

$$\widehat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} \sum_{x,y \in D} [\widetilde{I}(x,y) \ln(\text{PSF}(x,y|\boldsymbol{\theta})) - \text{PSF}(x,y|\boldsymbol{\theta})]$$

- Requires a model of noise (shot noise, or shot noise plus Gaussian read noise)
- Requires a good PSF model but can use an approximate PSF width (**PSF width can be a fit parameter**)
- Known to be unbiased, and consistent!
- In low background, center and crop the ROI to avoid PSF tail misspecifications
- For high-background fluorescence, the noise can be approximated as constant-variance Gaussian model
- MLE estimates the positions with (often) the highest possible precision (approaches CRLB)

LS vs MLE

Favor MLE when adequate information is available on PSF shape and camera performance
 Table 1 | Comparison of the MLE and LS criteria for localization of single isotropic point sources

- Maximum-likelihood estimation Least-squares criterion • Can, in principle, achieve theoretical limit of Often has lower precision but close to MLE precision for high photon counts and precision background Works best with a good model of camera noise • Requires no information about noise; equivalent to MLE for Gaussian noise Requires a good PSF model for optimal Robust against misspecification of PSF shape performance but can use approximate PSF but requires well-specified PSF width, or PSF shape; PSF width can be a fit parameter width can be a fit parameter • Takes more time to converge if PSF width is a fit parameter Typically implemented with analytical PSF (i.e., a formula) but has been implemented with measured PSFs for 3D imaging^{41,48} Potential small-denominator problem when background is low and PSF tail is misspecified; this is solvable by proper centering and sizing of the ROI
 - Suitable for GPU implementation; fast algorithm available that fits x and y independently⁵⁶
- Suitable for GPU implementation; fast algorithm available that fits only x and y and ignores other fit parameters¹⁶

Localization algorithms

	Fitting approach and PSF	Common implementations	Noise model	Notes for use
Single- fluorophore fits	MLE with isotropic PSF	Ober lab ^a , Lidke lab (GPU implementation ⁴⁷), rapidSTORM ⁵² , M2LE ⁵⁶	All assume shot noise; Ober's software also allows Gaussian camera read noise	Good for fluorophores with freely rotating dipole moments. Usually use a Gaussian PSF. Defocus can be accounted for via variable PSF width. M2LE includes an ellipticity test for rejection of multiple-fluorophore images
	MLE with elliptical PSF	Lidke lab, rapidSTORM	Shot noise	Most useful for astigmatism-based 3D imaging if the model assumes an ellipse oriented along one of the detector axes. Useful for rejection of two-molecule overlaps when the ellipse is arbitrarily oriented
	MLE with isotropic PSF, EMCCD excess noise and read noise	UAIM by Ober lab ⁴⁶	Combination of Poisson noise, electron- multiplication noise of EMCCD and Gaussian read noise	Optimized for use with very high magnification, but the noise model is applicable to almost any single-molecule experiment with an EMCCD
	LS with experimental PSF	Bewersdorf lab ⁴¹	No detailed assumptions, but performance approaches theoretical limit if noise	Developed with particular attention to defocused fluorophores for 3D biplane imaging
	Fast LS with circular Gaussian PSF	Gaussian mask ¹⁶	is a Gaussian; background correction is possible	Practical when the PSF is not known in detail or when computational time is crucial
	Center of mass	Virtual window center of mass (VWCM) ⁶³	No detailed assumptions	Appropriate for diffusing fluorophores ⁶⁴ . Good first-pass estimate to seed an iterative fitting routine. Designed for background correction
	fluoroBancroft ¹⁹	LivePALM ⁶⁶	No detailed assumptions	Assumes a Gaussian PSF and requires single iteration
	Radial symmetry	Parthasarathy lab ³² , Ma lab ^{67,68}	No detailed assumptions	PSF is only assumed to be radially symmetric. Performance is good even for nonradial PSFs ³²

Practical considerations in Localization Microscopy

- 1. Image filtering and **feature enhancement**
 - a. Averaging filter
 - b. Gaussian filter
 - c. Lowered Gaussian filter
 - d. Difference-of-Gaussian filter
 - e. Wavelet filter
 - f. Median filter
 - g. No filter
- 2. Finding approximate positions of molecules
 - a. Detection of local intensity maxima
 - b. Non-maximum suppression
 - c. Centroid of connected components
 - d. Threshold selection
- 3. Sub-pixel **2D localization** of molecules
 - a. Today's awesome tutorial

- 4. Sub-pixel **3D localization** of molecules
 - a. PSF model
 - b. Defocusing models
 - c. Calibration of the imaging system
 - d. Localization uncertainty

5. The Crowded-field problem

- a. Multiple-emitter fitting analysis
- b. Model selection

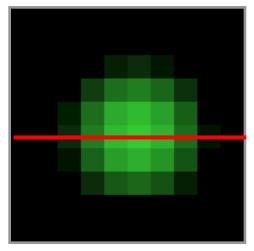
6. Post-processing analysis

- a. Removing molecules with poor localization
- b. Local density filter
- c. Merging of reappearing molecules
- d. Lateral drift correction (cross-correlation)
- e. Z-stage scanning

- 7. Visualization methods
 - a. Scatter plot
 - b. Histogram
 - c. Averaged shifted histograms
 - d. Gaussian rendering

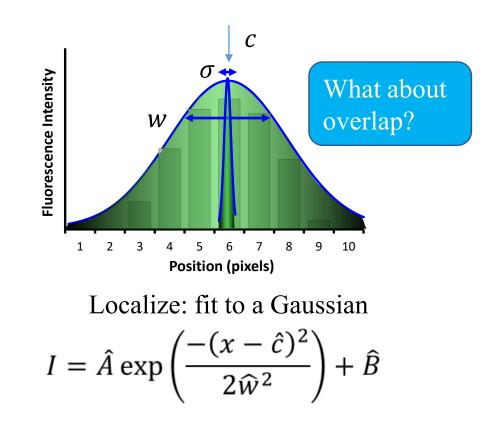
Localizing sparse emitters

Diffraction-limited spot recorded on camera



Localization precision $\sigma \propto \frac{1}{\sqrt{N}}$

500 photons $\leftrightarrow \sim 25 \text{ nm}$



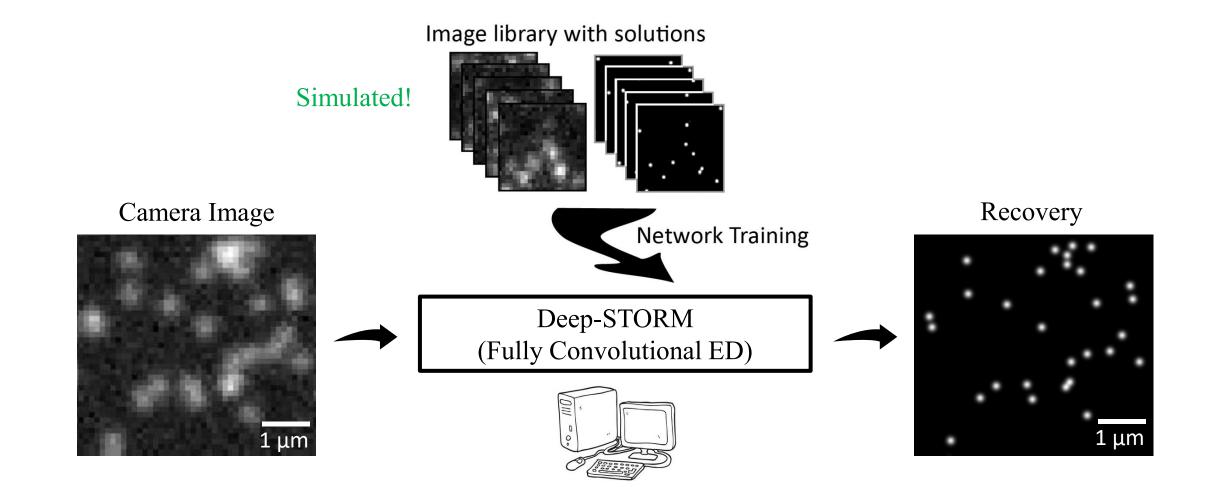
High density fitting is challenging

Ground TruthCamera Image<t

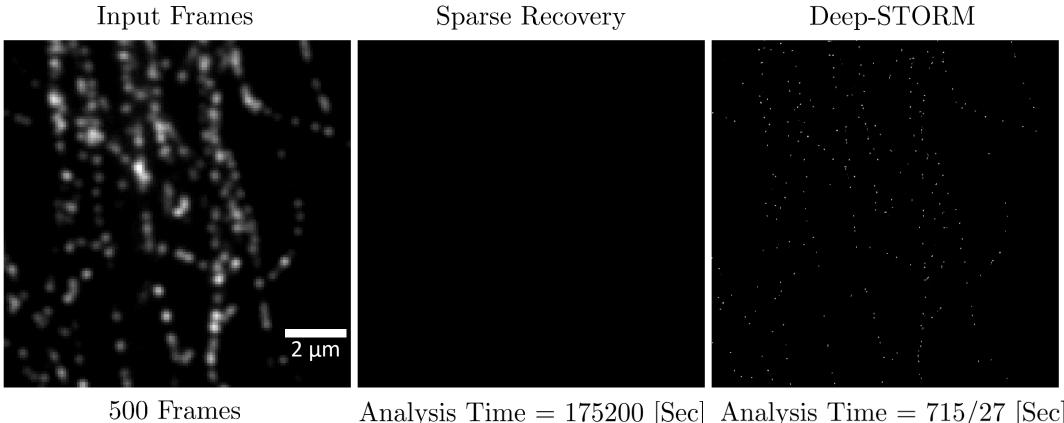
Multi-emitter Gaussian fitting will perform poorly!

0.6 µm

Deep-STORM general idea

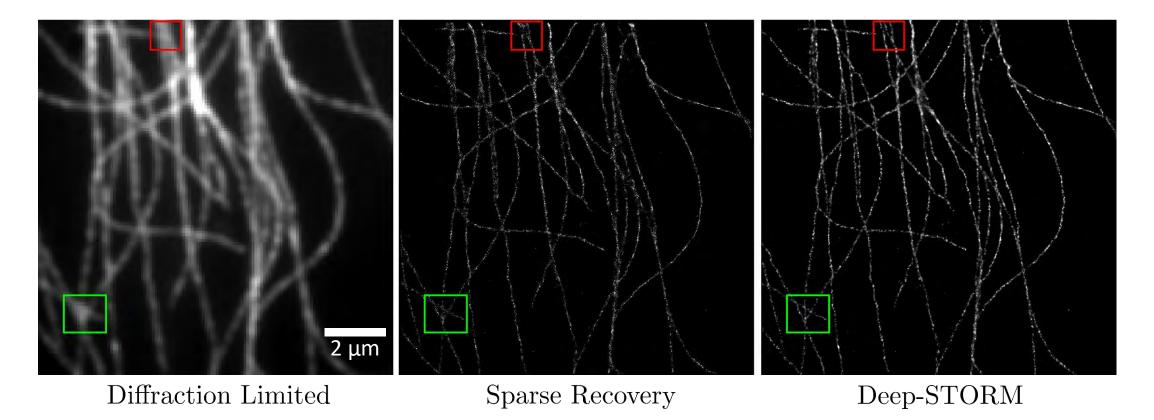


Real microtubules experiment



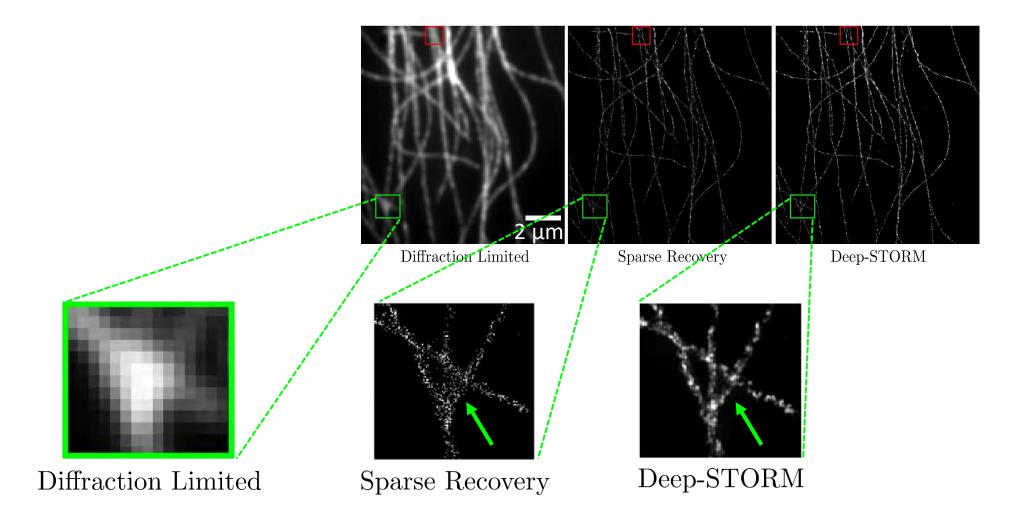
Analysis Time = 175200 [Sec] Analysis Time = 715/27 [Sec]

Real microtubules experiment

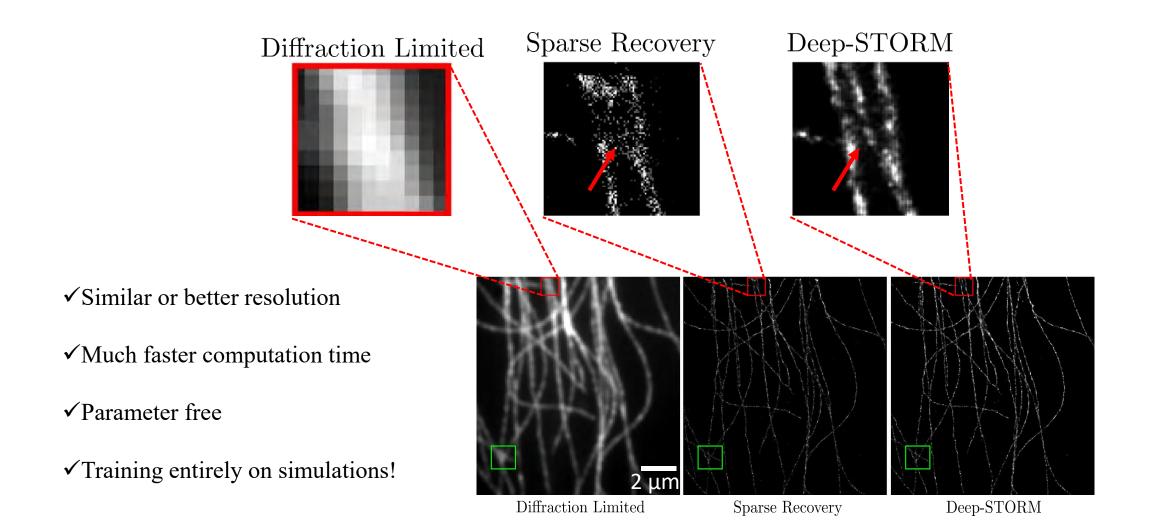


*Experimental data - ground truth is not available.

Qualitative assessment of the results



Qualitative assessment of the results



For more details

Deep-STORM: super-resolution single-molecule microscopy by deep learning

ELIAS NEHME,^{1,2} LUCIEN E. WEISS,² TOMER MICHAELI,¹ AND YOAV SHECHTMAN^{2,*}

¹Electrical Engineering Department, Technion, 32000 Haifa, Israel ²Biomedical Engineering Department, Technion, 32000 Haifa, Israel *Corresponding author: yoavsh@bm.technion.ac.il

Received 13 February 2018; accepted 13 March 2018 (Doc. ID 323156); published 12 April 2018

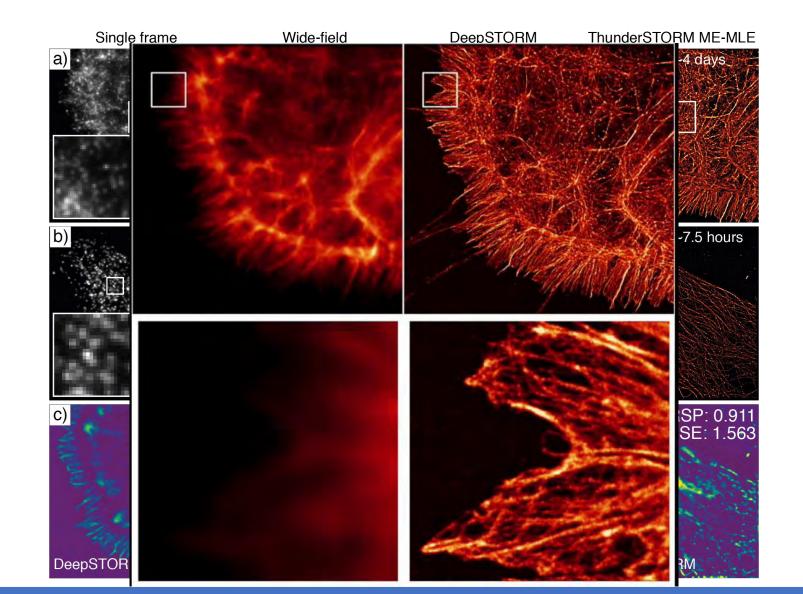
We present an ultrafast, precise, parameter-free method, which we term Deep-STORM, for obtaining superresolution images from stochastically blinking emitters, such as fluorescent molecules used for localization microscopy. Deep-STORM uses a deep convolutional neural network that can be trained on simulated data or experimental measurements, both of which are demonstrated. The method achieves state-of-the-art resolution under challenging signal-to-noise conditions and high emitter densities and is significantly faster than existing approaches. Additionally, no prior information on the shape of the underlying structure is required, making the method applicable to any blinking dataset. We validate our approach by super-resolution image reconstruction of simulated and experimentally obtained data. © 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

OCIS codes: (100.6640) Superresolution; (180.2520) Fluorescence microscopy; (150.1135) Algorithms; (100.0100) Image processing.

https://doi.org/10.1364/OPTICA.5.000458

Code: <u>https://github.com/EliasNehme/Deep-STORM</u>

Impact on biology research



References

Ober, R. J., Ram, S., & Ward, E. S. (2004). Localization Accuracy in Single-Molecule Microscopy. *Biophysical Journal*, *86*(2), 1185–1200. http://doi.org/10.1016/S0006-3495(04)74193-4

Abraham, A. V., Ram, S., Chao, J., Ward, E. S., & Ober, R. J. (2009). Quantitative study of single molecule location estimation techniques. *Optics Express*, *17*(26), 23352–22. http://doi.org/10.1364/OE.17.023352

K. Xu, H.P. Babcock & X. Zhuang (2012). Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton. *Nature Methods* **9**, 185–188 (2012) doi:10.1038/nmeth.1841

Small, A., & Stahlheber, S. (2014). Fluorophore localization algorithms for super-resolution microscopy. *Nature Methods*, *11*(3), 267–279. http://doi.org/10.1038/nmeth.2844

Deschout, H., Zanacchi, F. C., Mlodzianoski, M., Diaspro, A., Bewersdorf, J., Hess, S. T., & Braeckmans, K. (2014). **Precisely and accurately localizing single emitters in fluorescence microscopy**. *Nature Methods*, *11*(3), 253–266. http://doi.org/10.1038/nmeth.2843

Ovesny, M., Ovesný, M., K i ek, P., Křížek, P., Borkovec, J., Borkovec, J., et al. (2014). ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. *Bioinformatics*, *30*(16), 2389–2390. http://doi.org/10.1093/bioinformatics/btu202

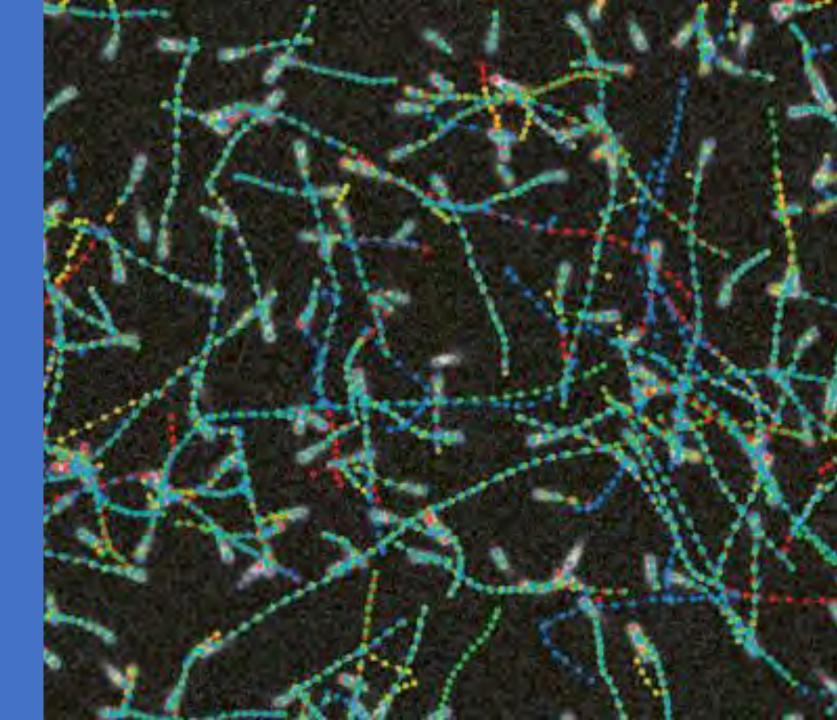
http://zeiss-campus.magnet.fsu.edu/articles/superresolution/palm/practicalaspects.html

Department of Biomedical Engineering, Technion Computational optical imaging 336547

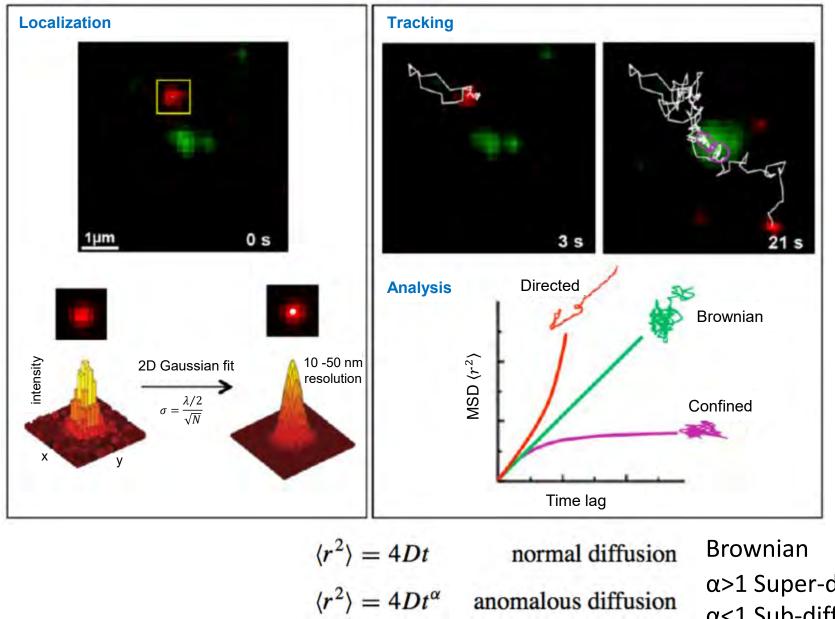
Tutorial 8 – Single Particle Tracking

Elias Nehme & Yoav Shechtman

22 December 2020



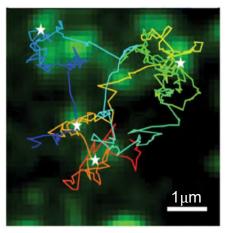
Tracking Particles



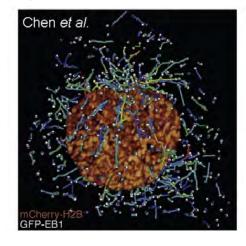
α>1 Super-diffusion (directed)α<1 Sub-diffusion (confined)

Single Particle Tracking in Biology

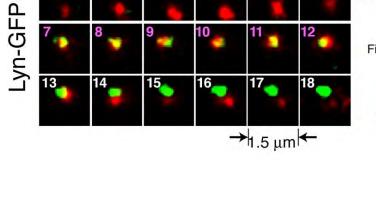
Potassium channels tracking overlaid on CCP

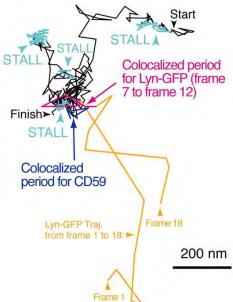


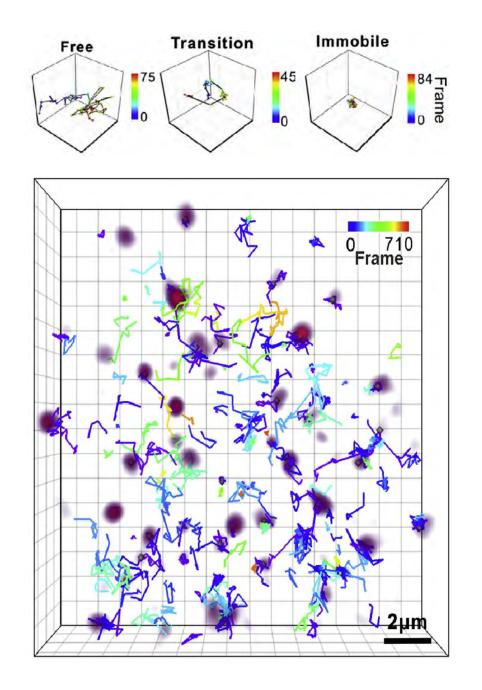
3D Tracking of EB1 Dynamics in a Live Cell



Recruitment of Lyn to CD59 clusters



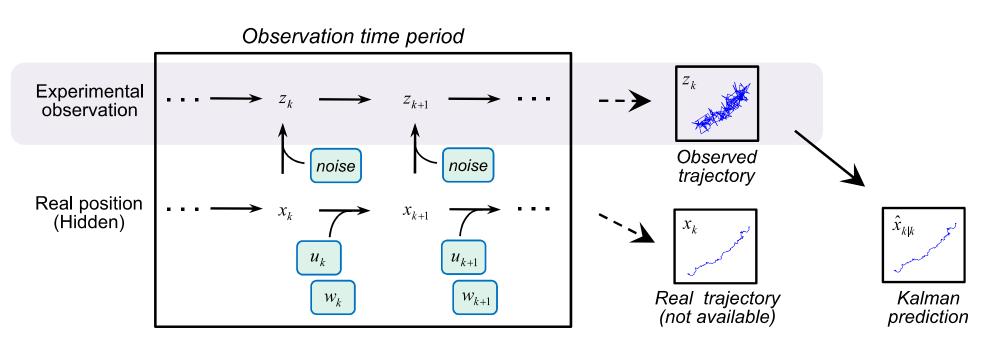




Single Particle Tracking in Biology

- In a particle tracking experiment, the sensor noise in the image acquisition system is transformed into a positioning error → computed particle trajectory is a noisy version of the true particle trajectory
- The Kalman filter finds the optimal state estimate for linear dynamic systems from sensor measurements in the presence of Gaussian noise

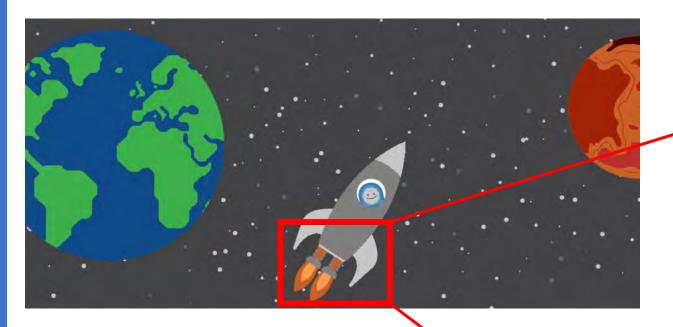
Rudolf E. Kalman



A Kalman filter is an optimal estimation algorithm used to estimate states of a system from indirect and uncertain measurements

State observers

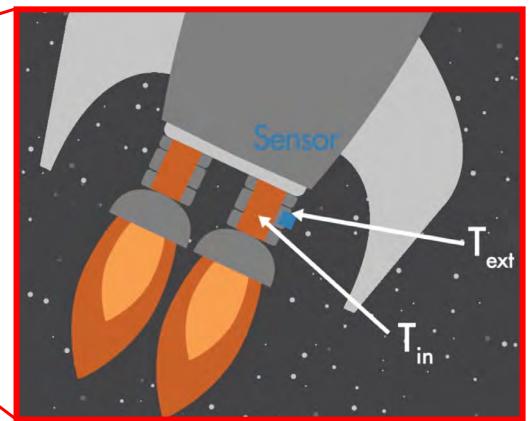
State observers are used to **estimate the internal states of a system**:



<u>Question:</u> why not put the sensor inside?

Answer: it will melt!

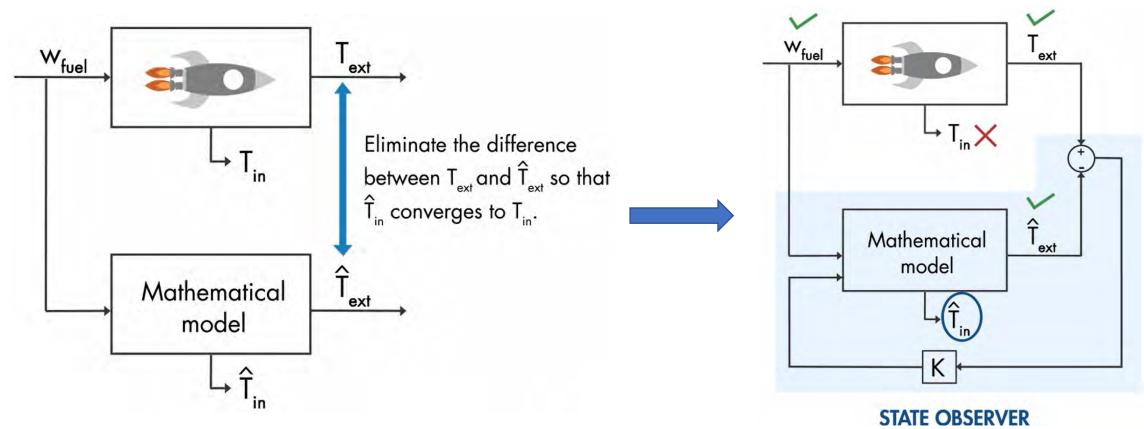
variables of interest are measured only indirectly



https://www.mathworks.com/videos/series/understanding-kalman-filters.html

State observer and Kalman filter

State observers are used to **estimate the internal states of a system**:

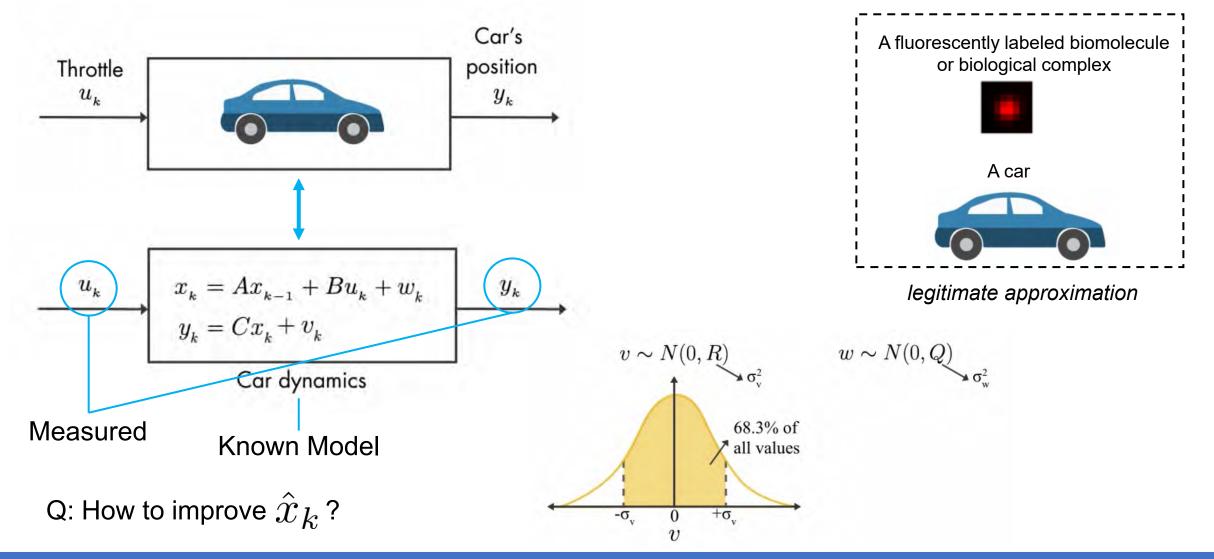


- State observer utilizes feedback control to drive the estimated states to the true states
- Kalman filtering provides an optimal way of choosing the gain of this feedback controller

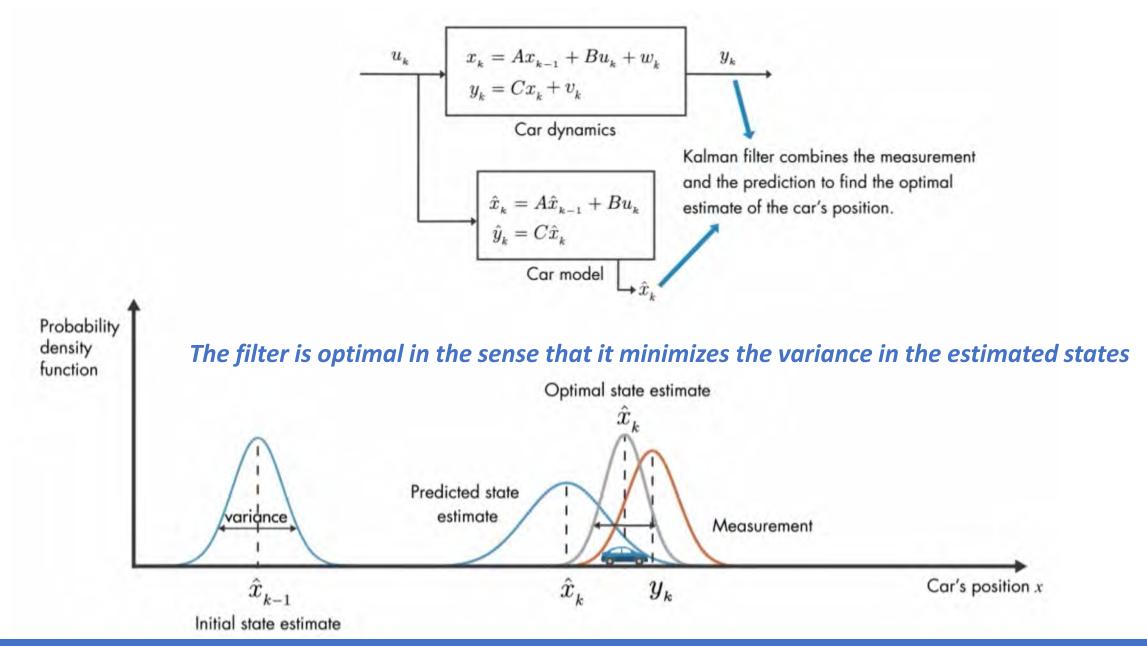
Kalman filter – Tracking the Position of a Vehicle

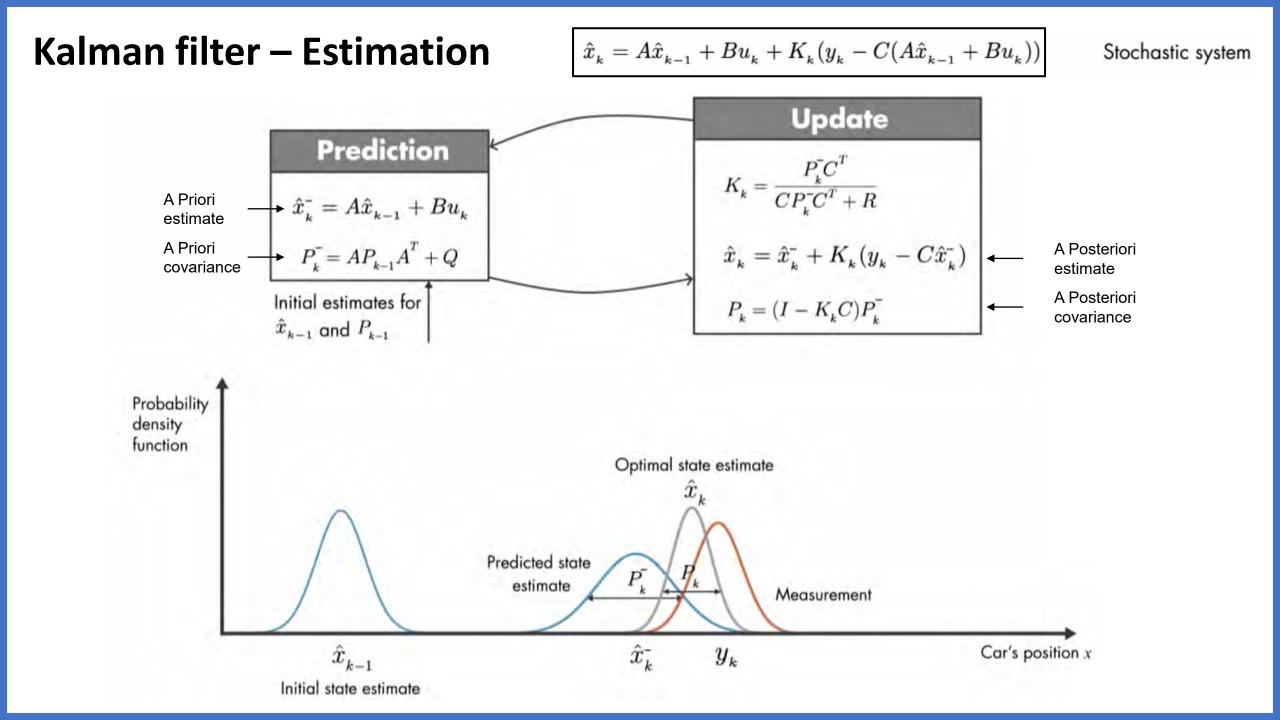
Kalman filters combine two sources of information: predicted states and noisy measurements

 \rightarrow To produce optimal and unbiased estimates of system states



Kalman filter – Tracking the Position of a Vehicle



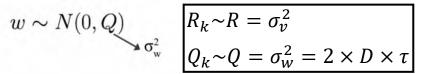


Kalman filter – 1D Particle Tracking - MATLAB

 $v \sim N(0, R)$ σ_v^2 68.3% ofall values vv

 $\underline{x}_k = A\underline{x}_{k-1} + w_k$ $\overline{y}_k = C\underline{x}_k + v_k$

 $\begin{vmatrix} x_k = x_{k-1} + u_0 \Delta t + w_k \\ y_k = x_k + v_k \end{vmatrix}$



- One-dimensional particle position x_k at timestep k
- Constant directed movement u_0
- Process noise, w_k : thermal fluctuations at timestep k
- Measurement noise, v_k : zero-mean white noise at timestep k

$$\underline{x}_k = \begin{pmatrix} x_k \\ u_0 \end{pmatrix}$$

state estimate

$$A = \begin{pmatrix} 1 & \Delta t \\ 0 & 1 \end{pmatrix}$$

state transition model

 $C = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

observation model

 $Q_{MAT} = \begin{pmatrix} \sigma_w^2 & 0 \\ 0 & \mathbf{0} \end{pmatrix}$ process noise covariance matrix

Assuming u_0 is constant and noise free

$$R_{MAT} = \begin{pmatrix} \sigma_{v}^{2} & 0\\ 0 & \mathbf{0} \end{pmatrix} + \varepsilon$$

measurement noise

covariance matrix

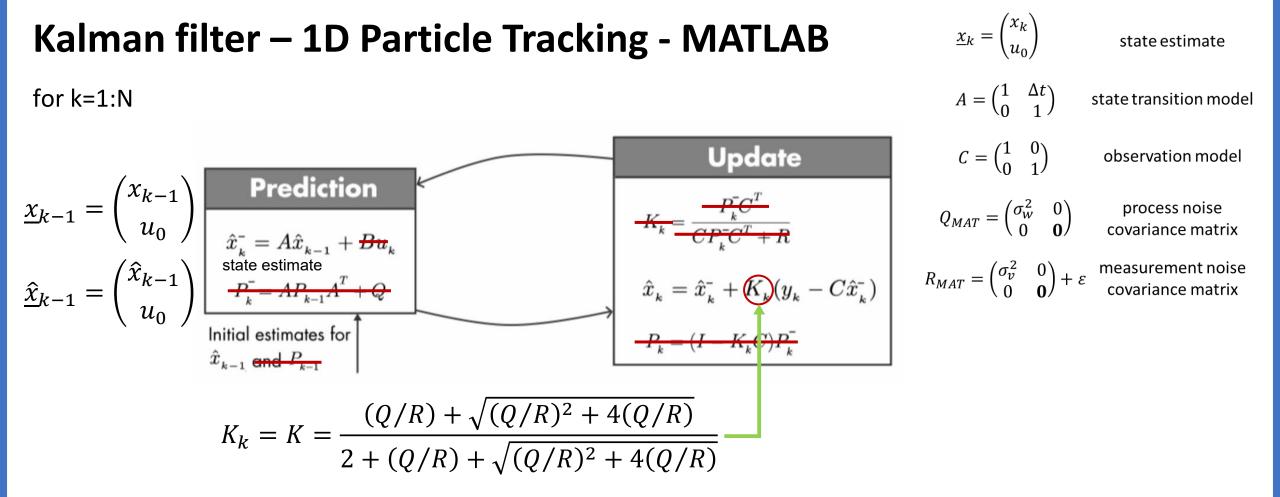
Correcting division by zero

Estimation of σ_w^2

• S: variance of the measured displacement \equiv var (dy)

 $S = Q + 2 \times R \longrightarrow Q = S - 2 \times R$

R: a priori knowledge on the measurement noise

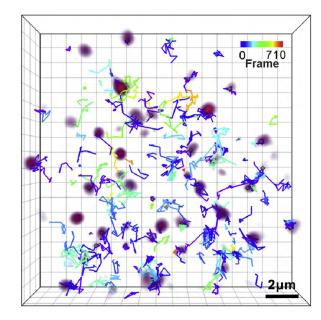


Optimal value of K under assumptions of **linear dynamics with Gaussian process and measurement noise**

Simulating realistic particle tracks - MATLAB

While M < # of particles

- 1. Assign an initial number N of sub-particles (drawn from a uniform random distribution [1,4])
- 2. Initialize the 3D particle position ($z_0 = 0$) randomly within the field of view (FOV)
- 3. Construct x, y, z —trajectory (75% probability of undergoing xy linear motion). The z trajectory always consists of Brownian motion.
- 4. Assign the number N_S of splitting events (drawn from a uniform random distribution [1, N]) and the corresponding time points t_S at which these occur (drawn from a uniform random distribution).
- 5. Create an additional trajectory (linear motion at a 2D random orientation) which starts at the splitting time $t = t_S(1)$, ends at t = T and whose initial point correspond to the position of p_i at $t_S(1)$. This trajectory now corresponds to the one of a new particle p_{i+1} . Update the number of particles left in p_i .

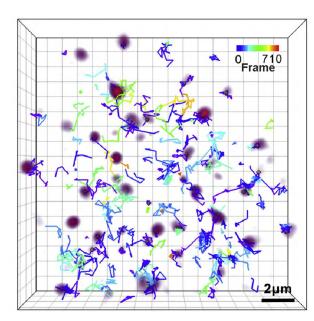


Gι	Guidelines					
•	50 particle tracks					
•	Brownian motion					
•	75% of particles undergoing					
	linear motion					
•	particles undergoing splitting					
	and merging events (50/50)					
• -						

Simulating realistic particle tracks - MATLAB

- 6. Repeat 5. $N_S 1$ times going through t_S . At this point you should obtain N_S trajectories, all ending at t = T and starting at $t \in [0, t_S(1), ..., t_S(N_S 1)]$
- 7. Split the trajectory of the initial particle p_i into N_S segments/particles $p_{i+N-1+k}$ according to t_S ($k = 1: N_S$). Update the number of particles in each $p_{i+N-1+k}$. E.g. an initial particle splitting two times produces five particles.
- 8. With a probability of 50%, flip the trajectories (x,y,z,t,# of sub-particles) to convert splitting into merging events (flipIr).
- 9. Update the total number of particles M

end

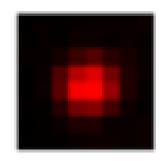


Guidelines 50 particle tracks Brownian motion 75% of particles undergoing linear motion particles undergoing splitting and merging events (50/50)

The purpose of this simulated tracks is to assess the performance of any particle tracking algorithm for a particular application

Simulating realistic particle tracks – MATLAB – Optical image

• Acquisition Model & Pixelation \Verticles & time points



$$PSF_G(x, y | \boldsymbol{\theta}) = \theta_N E_x E_y E_z + \theta_b$$

meshgrid, erf

Alternative: 3D Gaussian centered on $[\theta_x, \theta_y, \theta_z]$

- Quantum Efficiency & Poisson Noise Vframes poissrnd
- Readout Noise & Dark Current ∀frames
- Discretization \forall pixels $g = \left[2^n \left(\frac{g}{f_W}\right)\right]$

uint16

n: number of bitsg: image stack of particlesfw: full well capacity

$$E_x = \frac{1}{2} \operatorname{erf}\left(\frac{x - \theta_x + \frac{1}{2}}{\sqrt{2}\theta_\sigma}\right) - \frac{1}{2} \operatorname{erf}\left(\frac{x - \theta_x - \frac{1}{2}}{\sqrt{2}\theta_\sigma}\right)$$
$$E_y = \frac{1}{2} \operatorname{erf}\left(\frac{y - \theta_y + \frac{1}{2}}{\sqrt{2}\theta_\sigma}\right) - \frac{1}{2} \operatorname{erf}\left(\frac{y - \theta_y - \frac{1}{2}}{\sqrt{2}\theta_\sigma}\right)$$

$$E_z = \frac{1}{2} \operatorname{erf}\left(\frac{z - \theta_z + \frac{1}{2}}{2\sqrt{2}\theta_\sigma}\right) - \frac{1}{2} \operatorname{erf}\left(\frac{z - \theta_z - \frac{1}{2}}{2\sqrt{2}\theta_\sigma}\right)$$

 $\boldsymbol{\theta} = \left[\theta_{\boldsymbol{\chi}}, \theta_{\boldsymbol{\mathcal{Y}}}, \theta_{\sigma}, \theta_{N}, \theta_{b}\right]$

 θ_{χ} sub-pixel molecular x-coordinate

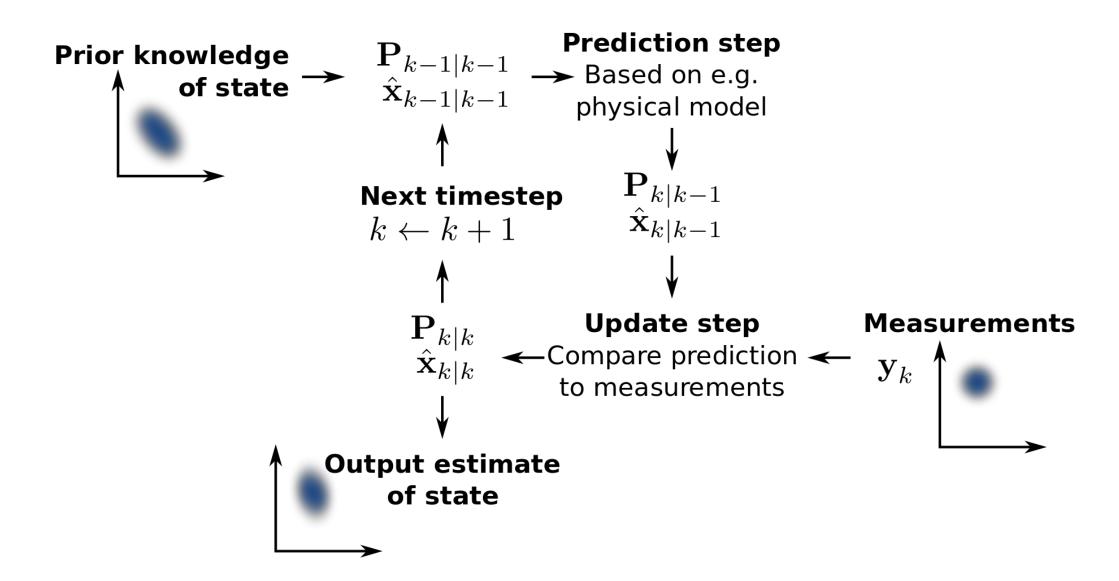
- θ_y sub-pixel molecular y-coordinate
- θ_z sub-pixel molecular z-coordinate

 $heta_\sigma$ imaged size of the molecule

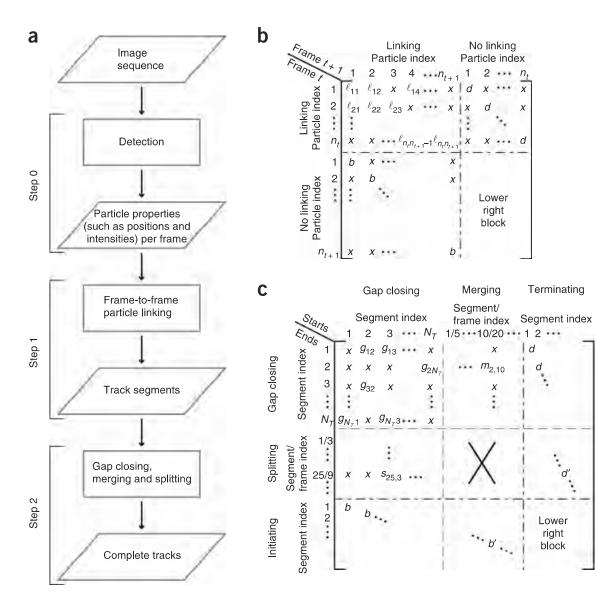
 θ_N total number of photons emitted by the molecule

 θ_b background offset

Illustration of Kalman filtering for position estimation in 2D



Single Particle Tracking (SPT) using μ -track



 $\hat{A}_{\arg\min} = \sum_{i=1}^{Number \ Number \ of \ rows \ of \ columns} \sum_{j=1}^{Number \ Number \$

scriptTrackGeneral:

determines the final tracks based on a target motion model

scriptDetectGeneral:

detection of diffraction-limited objects such as single molecules and small molecular aggregates

plotTracks2D:

statically plots the tracks generated by scriptTrackGeneral

https://downloads.openmicroscopy.org/u-track/2.1.1/artifacts/u-track-2.1.1.pdf

A Java package for running ImageJ and Fiji within Matlab

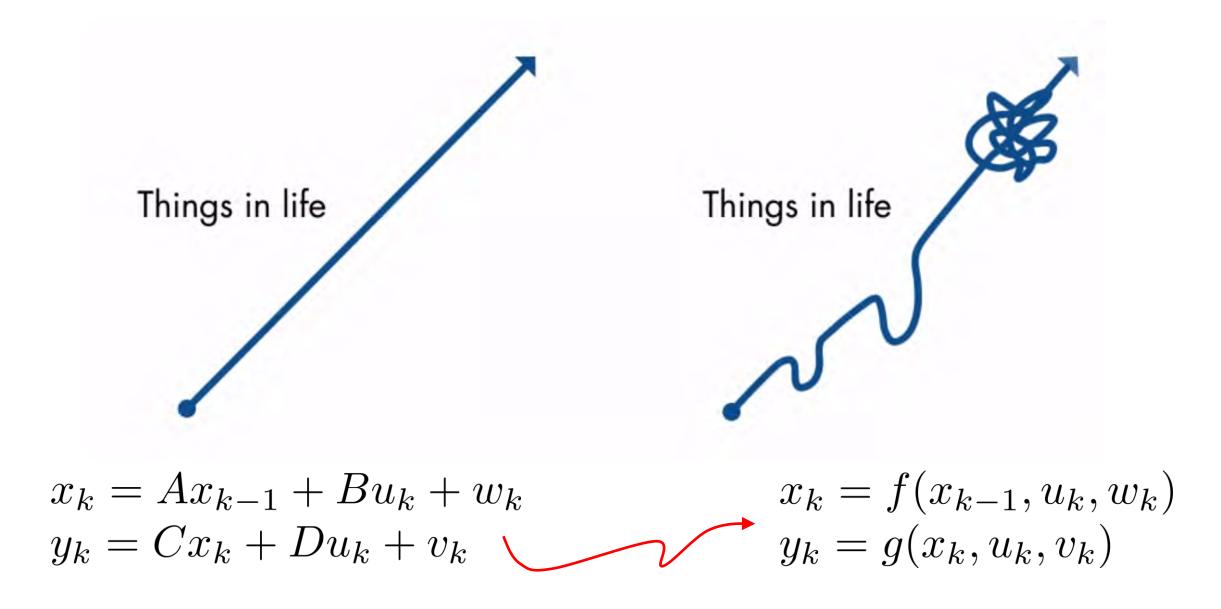
http://bigwww.epfl.ch/sage/soft/mij/

SPT methods

		Detection			Linking				
Method	Authors	Prefilter	Approaches	Remarks	Principle	Approaches	Remarks	Dim.	Refs.
1	I.F. Sbalzarini Y. Gong J. Cardinale	-	M, C	Iterative intensity-weighted centroid calculation	Combinatorial optimization	MF, MT, GC	Greedy hill-climbing optimization with topological constraints	2D & 3D	32
2	C. Carthel S. Coraluppi	Disk	М, Т	Adaptive local-maxima selection	Multiple hypothesis tracking	MF, MT, MM	Motion models are user specified (near-constant position and/or velocity)	2D & 3D	33,34
3	N. Chenouard F. de Chaumont JC. Olivo-Marin	Wavelets	М, Т	Maxima after thresholding two-scale wavelet products	Multiple hypothesis tracking	MF, MT, MM, GC	Motion models are user specified (near-constant position and/or velocity)	2D & 3D	35–37
4	M. Winter A.R. Cohen	Gaussian, median and morphology	M, T, C	Adaptive Otsu thresholding	Multitemporal association tracking	MF, MT, GC	Post-tracking refinement of detections	2D & 3D	38,39
5	W.J. Godinez K. Rohr	Laplacian of Gaussian or Gaussian fitting	M, T, F, C	Either thresholding + centroid or maxima + Gaussian fitting	Kalman filtering + probabilistic data association	MF, MM	Interacting multiple models using motion models as specified	2D & 3D	29,40
6	Y. Kalaidzidis	Windowed floating mean background subtraction	T, F	Lorentzian function fitting to structures above noise level	Dynamic programming	MF, GC	Track assignment by the weighted sum of multiple features	2D	41
7	L. Liang J. Duncan H. Shen	Laplacian of Gaussian		Gaussian mixture model fitting	Multiple hypothesis tracking	MF, MM	Interacting multiple models with forward and backward linking	2D	42
8	Y. Xu K.E.G. Magnusson J. Jaldén H.M. Blau	Deconvolution	M, T, F	Watershed-based clump splitting and parabola fitting	Viterbi algorithm on state-space representation	MF, MT	Brownian motion is assumed in all cases	2D & 3D	43,44
9	P. Paul-Gilloteaux	Laplacian of Gaussian or Gaussian filtering	M, T, F	Either maxima with pixel precision (2D) or thresholding + Gaussian fitting (3D)	Nearest neighbor + global optimization	MF, MT, GC	Global optimization of associations using simulated annealing	2D & 3D	45,46
10	P. Roudot C. Kervrann F. Waharte	Structure tensor	T, F	Histogram-based thresholding and Gaussian fitting	Gaussian template matching	-	Only local and per-trajectory particle linking	2D	47–49
11	I. Smal E. Meijering	Wavelets	M, F, C	Gaussian fitting (round particles) or centroid calculation (elongated particles)	Sequential multiframe assignment	MF, MT, MM, GC	Global linking cost minimization	2D	35,50,5
12	JY. Tinevez S.L. Shorte	Difference of Gaussian	M, T, F	Parabolic fitting to localized maxima	Linear assignment problem	MT, GC	Two-step approach (frame-to-frame and segment linking)	2D & 3D	52,53
13	J. Willemse K. Celler G.P. van Wezel	Gaussian and top hat	Т, С	Watershed-based clump splitting	Nearest neighbor	MM, GC	Allows merging and splitting of particles and uses a linear motion model	2D & 3D	54,55
14	HW. Dan YS. Tsai	Gaussian, Wiener and top hat	т, с	Morphological opening-based clump splitting	Nearest neighbor + Kalman filtering	ММ	Essentially a 2D method keeping track of maximum intensity in <i>z</i>	2D & 3D	56,57

See **Supplementary Note 1** for further details on methods 1–14. Dim, dimensionality. Detection approaches: M, maxima detection; T, thresholding; F, fitting; C, centroid estimation. Linking approaches: MF, multiframe; MT, multitrack; MM, motion models; GC, gap closing.

Nonlinear Systems: Extended KF, Unscented KF, and Particle Filter



Nonlinear Systems: Extended KF, Unscented KF, and Particle Filter

State Estimator	Model	Assumed distribution	Computational cost	
Kalman filter (KF)	Linear	Gaussian	Low	
Extended Kalman filter (EKF)	Locally linear	Gaussian	Low (if the Jacobians need to be computed analytically) Medium (if the Jacobians can be computed numerically)	
Unscented Kalman filter (UKF)	Nonlinear	Gaussian	Medium	
Particle filter (PF)	Nonlinear	Non-Gaussian	High	

References

Liu, Z., Lavis, L. D., & Betzig, E. (2015). Imaging Live-Cell Dynamics and Structure at the Single-Molecule Level. *Molecular Cell*, 58(4), 644–659. <u>http://doi.org/10.1016/j.molcel.2015.02.033</u>

Chenouard, N., Smal, I., de Chaumont, F., Maška, M., Sbalzarini, I. F., Gong, Y., et al. (2014). Objective comparison of particle tracking methods. *Nature Methods*, *11*(3), 281–289. <u>http://doi.org/10.1038/nmeth.2808</u>

Suzuki, K.G.N, Fujiwara, T.K., Sanematsu, F., Iino, R., Edidin, M. & Kusumi, A. (2007). GPI-anchored receptor clusters transiently recruit Lyn and Gα for temporary cluster immobilization and Lyn activation: single-molecule tracking study 1. *Journal of Cell Biology*, 177(4), 717–730. <u>http://doi.org/10.1083/jcb.200609174</u>

Wieser, S., Moertelmaier, M., Fuertbauer, E., Stockinger, H., & Schutz, G.J. (2007). (Un)Confined Diffusion of CD59 in the Plasma Membrane Determined by High-Resolution Single Molecule Microscopy. *Biophysical Journal*, *92* (10), 3719–3728. <u>https://doi.org/10.1529/biophysj.106.095398</u>

Torreno-Pina, A.T., Manzo, C., & Garcia-Parajo, M.F. (2016). Uncovering homo-and hetero-interactions on the cell membrane using single particle tracking approaches. *Journal of Physics D: Applied Physics*, *49*(10). <u>https://doi.org/10.1088/0022-3727/49/10/104002</u>

Cheezum, M. K., Walker, W. F., & Guilford, W. H. (2001). Quantitative Comparison of Algorithms for Tracking Single Fluorescent Particles. *Biophysical Journal*, *81*(4), 2378–2388. <u>http://doi.org/10.1016/S0006-3495(01)75884-5</u>

Saxton, M. J., & Jacobson, K. (1997). Single-Particle Tracking: Applications to Membrane Dynamics. *Annual Review of Biophysics and Biomolecular Structure*, *26*(1), 373–399. <u>http://doi.org/10.1146/annurev.biophys.26.1.373</u>

Wu, P.-H., Agarwal, A., Hess, H., Khargonekar, P. P., & Tseng, Y. (2010). Analysis of Video-Based Microscopic Particle Trajectories Using Kalman Filtering. *Biophysical Journal*, *98*(12), 2822–2830. <u>http://doi.org/10.1016/j.bpj.2010.03.020</u>

Jaqaman, K., Loerke, D., Mettlen, M., Kuwata, H., Grinstein, S., Schmid, S. L., & Danuser, G. (2008). Robust single-particle tracking in livecell time-lapse sequences. *Nature Methods*, 5(8), 695–702. <u>http://doi.org/10.1038/nmeth.1237</u>

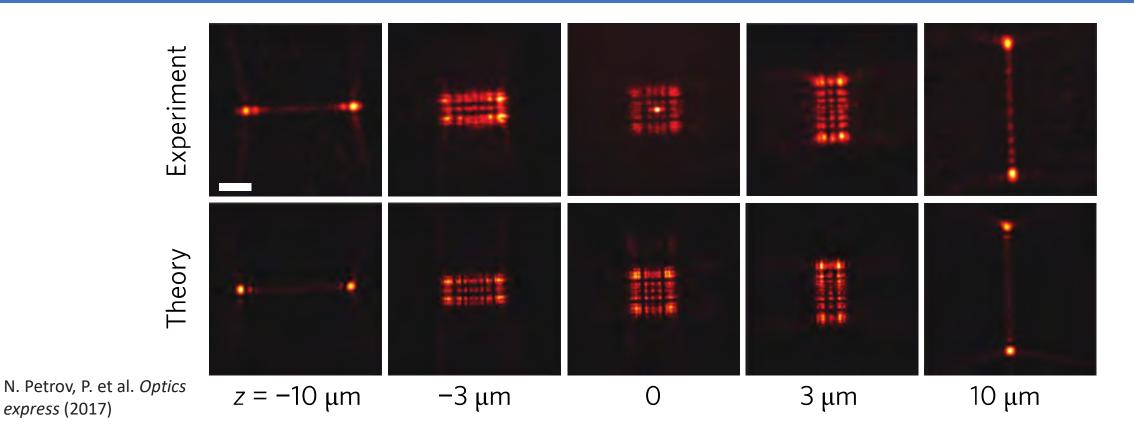
Department of Biomedical Engineering, Technion Computational optical imaging 336547

express (2017)

Tutorial 9 – **Phase retrieval**

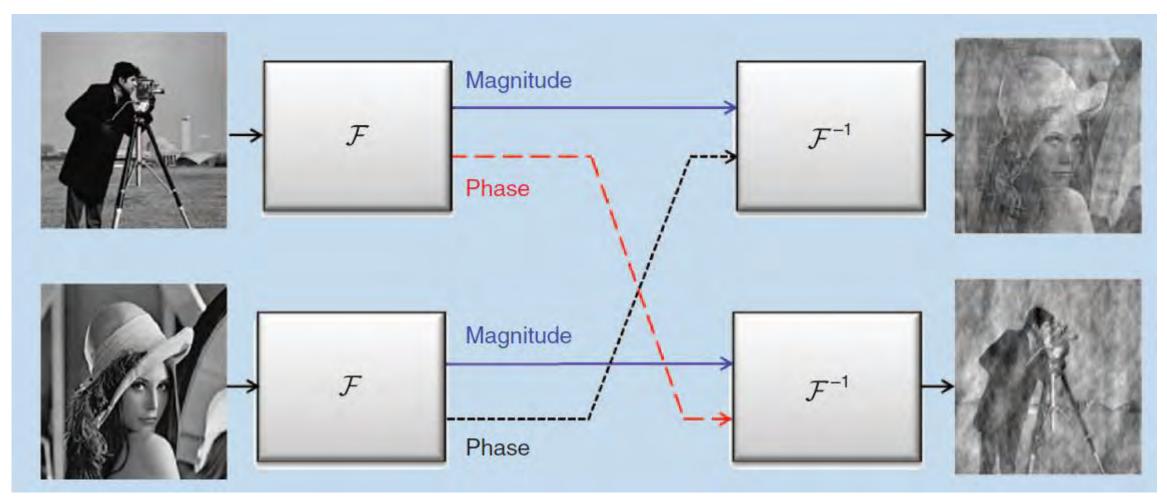
Elias Nehme & Yoav Shechtman

29 December 2020



The significance of knowing the Fourier phase

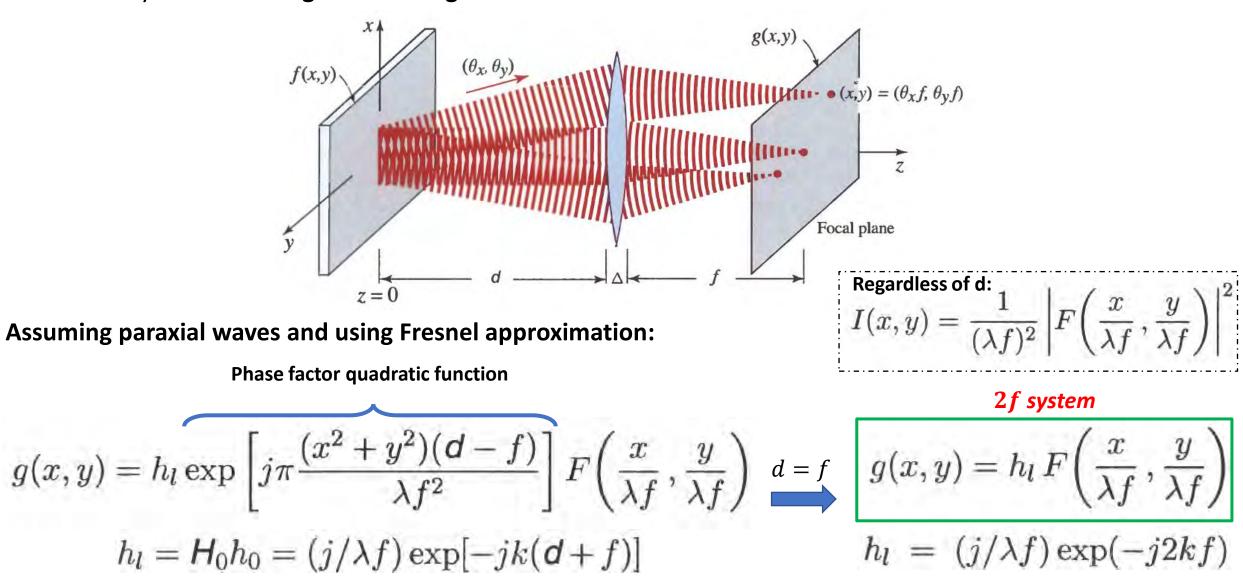
Fourier phase contains more information than the Fourier magnitude:



Shechtman, Y., et al. IEEE signal processing magazine (2015)

Phase retrieval problem and reminder

The recovery of a function given the magnitude of its Fourier transform:



Phase retrieval problem

Phase retrieval in optics:

The electromagnetic field oscillates at rates of $\sim 10^{15}$ Hz

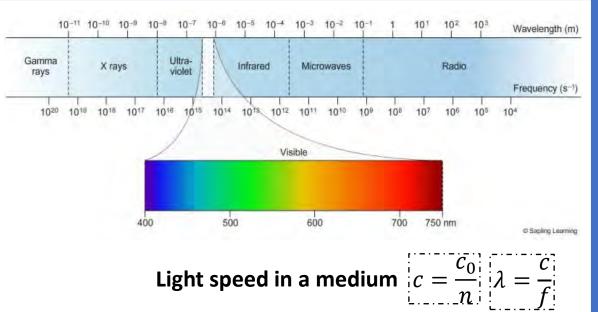
 \rightarrow No electronic measurement device can follow

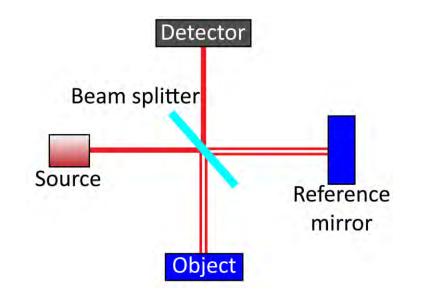
Measuring the phase of optical waves involves **additional complexity**, typically by requiring interference with another known field:

Phase is **measured using the interference pattern** of a beam which is split through two paths: a reference mirror and the sample

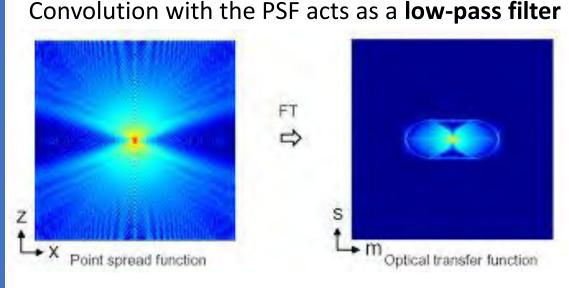
Impractical to implement for an existing microscope

The alternative is to recover the phase of the pupil function based on **measurements of the intensity PSF** and a **phase retrieval algorithm**

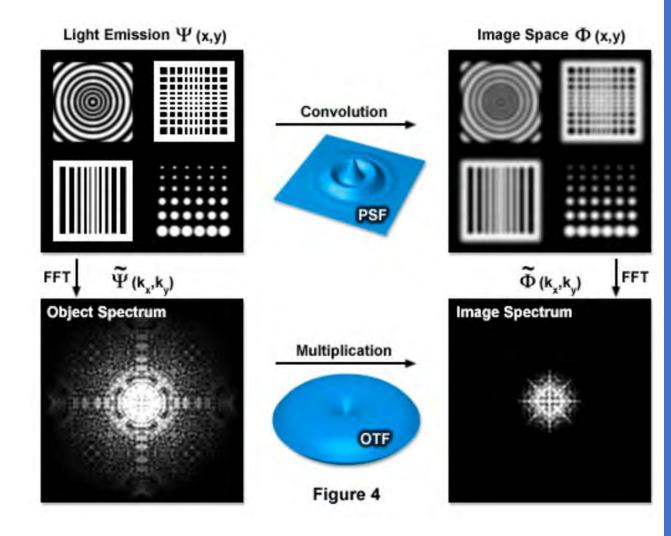




Optical Transfer Function & Point Spread Function - reminder

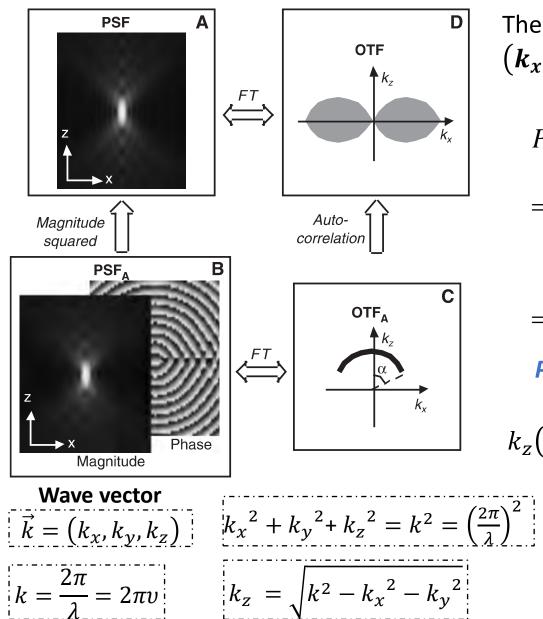


OTF is the normalized **Fourier transform of the PSF** of the optical system



http://zeiss-campus.magnet.fsu.edu/articles/superresolution/supersim.html

Pupil Function, Optical Transfer Function & Point Spread Function



The pupil function is the **projection of the OTF**_A onto the lateral (k_x, k_y) plane:

$$PSF_{A}(x, y, z) = \iiint OTF_{A}(k_{x}, k_{y}, k_{z}) \cdot e^{i(k_{x}x+k_{y}y+k_{z}z)} dk_{x}dk_{y}dk_{z} =$$

$$= \iint \underbrace{\int OTF_{A}(k_{x}, k_{y}, k_{z}) dk_{z}}_{\triangleq P(k_{x}, k_{y})} e^{i(k_{x}x+k_{y}y)} e^{ik_{z}(k_{x}, k_{y})^{z}} dk_{x}dk_{y} =$$

$$= \iint P(k_{x}, k_{y}) e^{i(k_{x}x+k_{y}y)} e^{ik_{z}(k_{x}, k_{y})^{z}} dk_{x}dk_{y}$$
Defocus \Rightarrow Spherical phase Lateral shift \Rightarrow Linear phase Pupil function

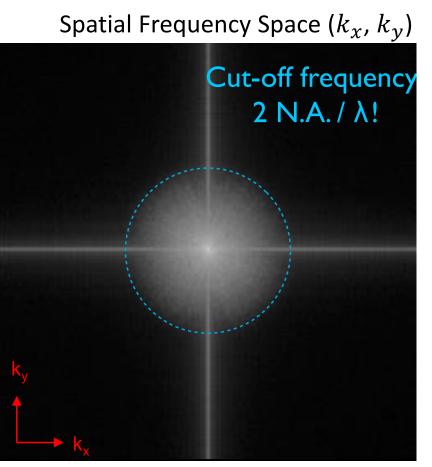
$$k_x, k_y) = \sqrt{\left(\frac{2\pi n}{\lambda}\right)^2 - \left(k_x^2 + k_y^2\right)} = 2\pi \frac{n}{\lambda} \sqrt{1 - \rho^2 \left(\frac{NA}{n}\right)^2}$$
$$k_x^2 + k_y^2 \le (2\pi NA/\lambda)^2, \rho^2 = \left(\frac{\lambda}{2\pi NA}\right)^2 \left(k_x^2 + k_y^2\right)$$

Normalized such that its value is unity at the **radius** of the limiting aperture

Maximum observable spatial frequency - reminder

Real space (x,y)

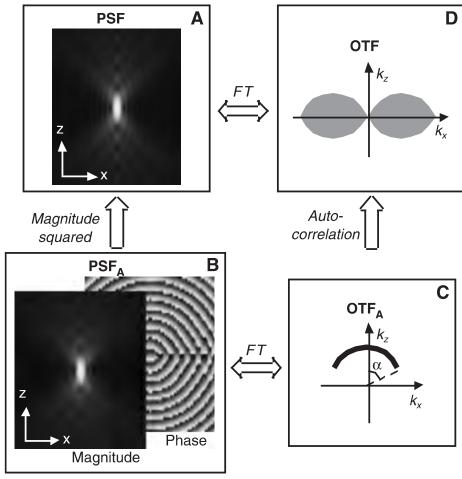
high N.A.



The classical limit of resolution in the microscope translates into frequency space, defining a maximum observable spatial frequency:

 $k_0 = 2NA / \lambda_{em}$

Pupil Function, Optical Transfer Function & Point Spread Function



Wave vector

Intensity PSF vs Pupil function:

- 2D, less prone to artefacts and noise
- Compact and modifiable description of a 3D widefield fluorescence microscope

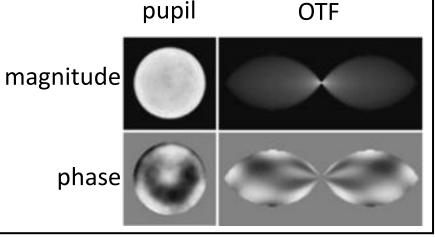
The pupil function is the **projection of the OTF**_A **onto the lateral** (k_x, k_y) **plane:**

$$PSF_{A}(x, y, z) = \iiint OTF_{A}(k_{x}, k_{y}, k_{z}) \cdot e^{i[k_{x}x + k_{y}y + k_{z}z]} dk_{x} dk_{y} dk_{z} =$$

$$= \iint \underbrace{\int OTF_{A}(k_{x}, k_{y}, k_{z}) dk_{z}}_{\triangleq P[k_{x}, k_{y}]} e^{i[k_{x}x + k_{y}y]} e^{ik_{z}[k_{x}, k_{y}]^{z}} dk_{x} dk_{y} =$$

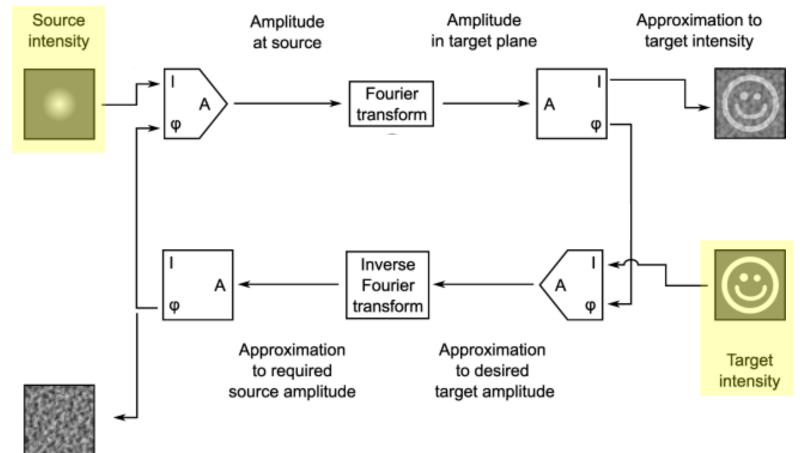
$$= \iint P(k_{x}, k_{y}) e^{i[k_{x}x + k_{y}y]} e^{ik_{z}[k_{x}, k_{y}]^{z}} dk_{x} dk_{y}$$
Pupil function:
$$pupil$$

- Measured by interferometric methods
- Inferred by phase retrieval algorithms



Gerchberg-Saxton Algorithm

- The most popular class of phase-retrieval methods
- Recovering a complex image from magnitude measurements at two different planes imaging plane and Fourier plane

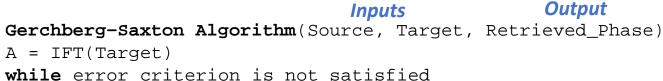


Hologram

Gerchberg-Saxton Algorithm

Let:

- A, B, C & D: complex planes with the same dimension as Target and Source Amplitude
- Amplitude-extracting function: e.g. for complex z = x + iy, amplitude(z) = sqrt(x · x + y · y) for real x, amplitude(x) = |x|
- Phase-extracting function: e.g. phase(z) = arctan(y/x)



```
while error criterion is not satisfied
```

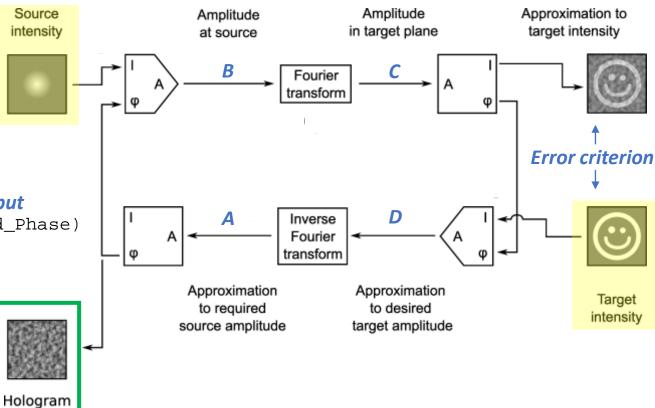
```
B = Amplitude(Source) * exp(i*Phase(A))
C = FT(B)
```

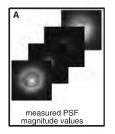
```
D = Amplitude(Target) * exp(i*Phase(C))
```

```
A = IFT(D)
```

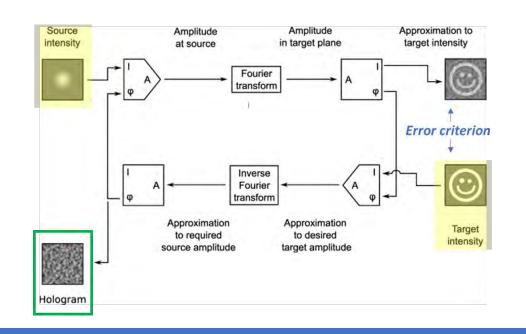
end

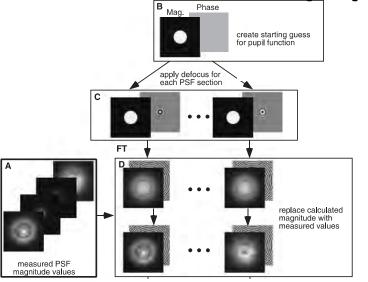
```
Retrieved_Phase = Phase(A)
```





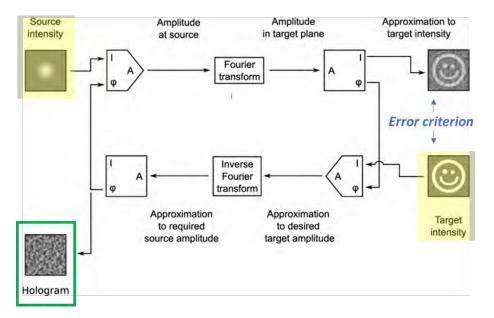
- A. Collect a series of defocus images (sections) of a sub-resolution point source
- B. Start a guess of the pupil function; the <u>intensity</u> is simply set to unity over the support defined by the objective lens NA and to zero elsewhere.
- C. Apply defocus to the pupil function to create each PSF section by multiplying it with $e^{+ik_z(k_x,k_y)z}$ (i.e. the spherical phase)
- D. Fourier transform the defocused-adjusted pupils to produce sections of the complex amplitude 3D PSF. The magnitudes of these calculated PSF sections are then <u>replaced by the square root of the corresponding sections of the measured intensity data</u>, while their phase values are left unchanged.

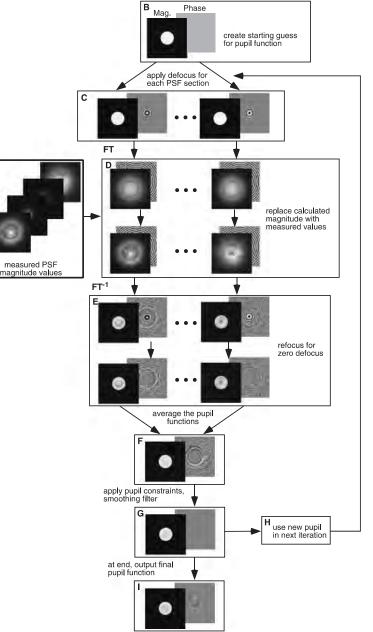




- E. These magnitude-corrected PSF sections are Fourier transformed back, and the defocus of each is <u>readjusted back to zero</u> by multiplying by the inverse defocus function $e^{-ik_z(k_x,k_y)z}$
- F. These modified pupil functions are averaged to produce a single pupil function estimate
- G. The NA limit constraint is then imposed to remove spatial frequency values outside of the pupil limit. A smoothing filter to suppress noise may optionally be applied.
- H. This new pupil function estimate forms the starting pupil for the next iteration.
- I. After a stopping criterion has been reached, the final pupil function estimate is

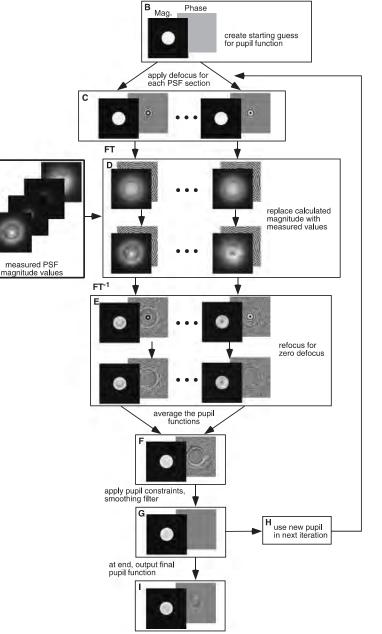
output.





Practical considerations:

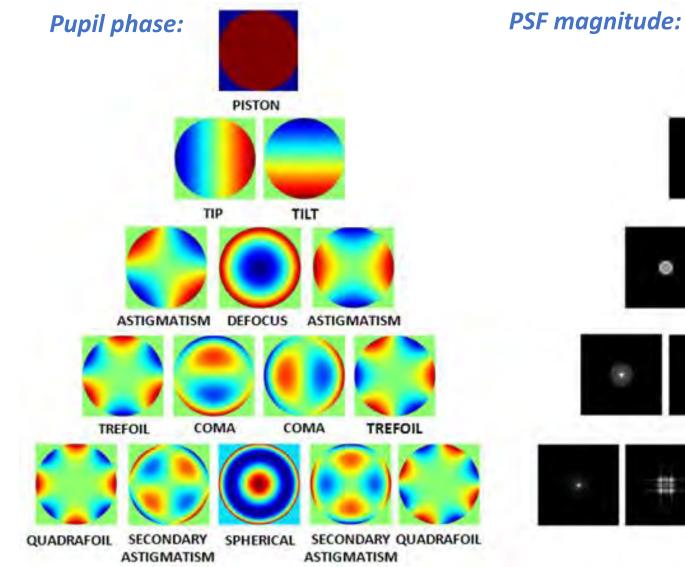
- It is possible to estimate the unknown phase information because of the redundancy provided by the multiple focus levels in the measured PSF and because of a priori knowledge of wavelength and NA, which place geometric constraints on the pupil function.
- Unlike in the original Gerchberg–Saxton algorithm, usually we <u>allow the pupil</u> <u>function's magnitude to vary over the aperture</u>, as one cannot generally assume that the pupil function's magnitude is constant over the pupil for high-NA systems.
- Alternatively, the pupil magnitude <u>can be measured</u> and used as an initial guess or fixed. Finally, the <u>pupil magnitude may be fixed to unity (as in the GS</u> <u>algorithm) or modeled</u>.

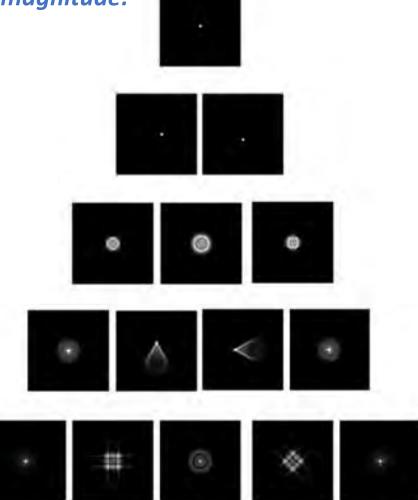


Practical considerations:

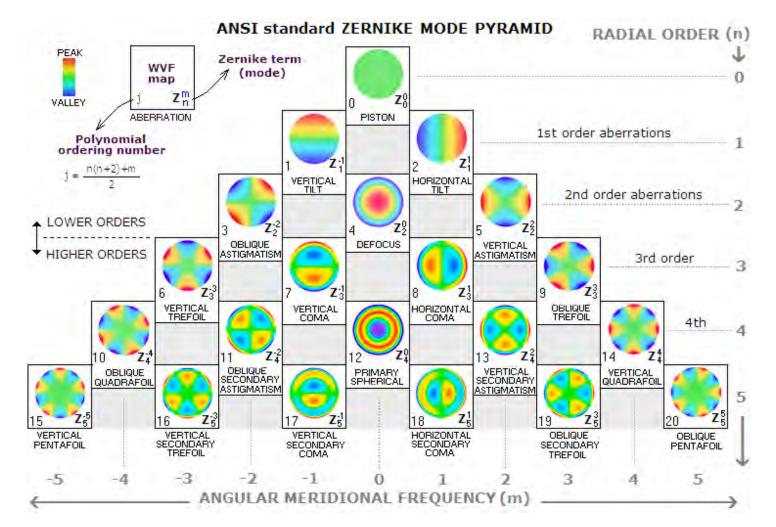
- <u>Smoothing constraints may be applied on the phase and/or the magnitude</u> of the pupil function. Robustness against 'dust-related' features.
- <u>Conservation of energy between the intensity PSF and the pupil plane magnitude</u> (*remember the normalization of FFT*)
- <u>Assumptions made</u>: bead size, vectorial nature of light, index mismatch, wavefront compression. See Hanser et al. Journal of microscopy (2004)

Zernike Polynomials and Optical Aberrations





Zernike Polynomials and Optical Aberrations



- reduces the optical aberration function to a few coefficients
- removes fine-scale noise
- provides meaningful information about the optical system

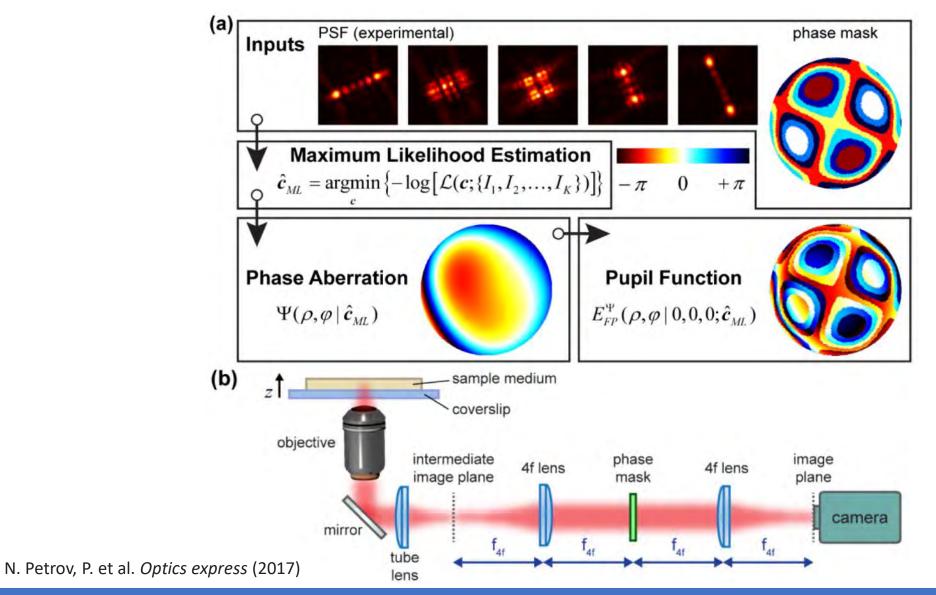
Zernike Polynomials and Optical Aberrations

Z_n^m	Radial degree (n)	Azimuthal degree (<i>m</i>)	Zj	Classical name
Z_0^0	0	0	1	Piston
Z_1^{-1}	1	-1	$2\rho\sin heta$	Tilt (vertical tilt)
Z_1^1	1	1	$2\rho\cos heta$	Tip (horizontal tilt)
Z_2^{-2}	2	-2	$\sqrt{6} ho^2\sin 2 heta$	Oblique astigmatism
Z_2^0	2	0	$\sqrt{3}(2\rho^2-1)$	Defocus
Z_2^2	2	2	$\sqrt{6}\rho^2\cos 2\theta$	Vertical astigmatism
Z_{3}^{-3}	3	-3	$\sqrt{8} ho^3\sin3 heta$	Vertical trefoil
Z_{3}^{-1}	3	-1	$\sqrt{8}(3\rho^3-2\rho)\sin\theta$	Vertical coma
Z_3^1	3	1	$\sqrt{8}(3 ho^3-2 ho)\cos heta$	Horizontal coma
Z_3^3	3	3	$\sqrt{8} ho^3\cos 3 heta$	Oblique trefoil
Z_{4}^{-4}	4	-4	$\sqrt{10} ho^4\sin4 heta$	Oblique quadrafoil
Z_{4}^{-2}	4	-2	$\sqrt{10}(4 ho^4-3 ho^2)\sin 2 heta$	Oblique secondary astigmatism
Z_4^0	4	0	$\sqrt{5}(6\rho^4 - 6\rho^2 + 1)$	Primary spherical
Z_4^2	4	2	$\sqrt{10}(4 ho^4-3 ho^2)\sin 2 heta$	Vertical secondary astigmatism
Z_4^4	4	4	$\sqrt{10} ho^4\cos4 heta$	Vertical quadrafoil

Normalized such that:

 $\int_0^{2\pi} \int_0^1 Z_j^2 \rho d\rho d\theta = \pi$

Practical application of phase retrieval on PSF engineering and aberration correction

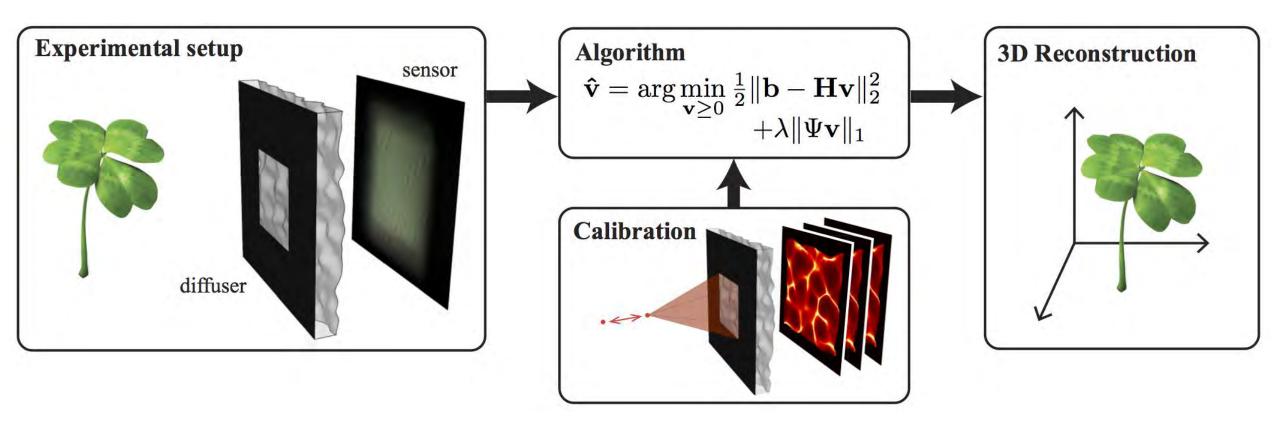


Department of Biomedical Engineering, Technion Computational optical imaging 336547

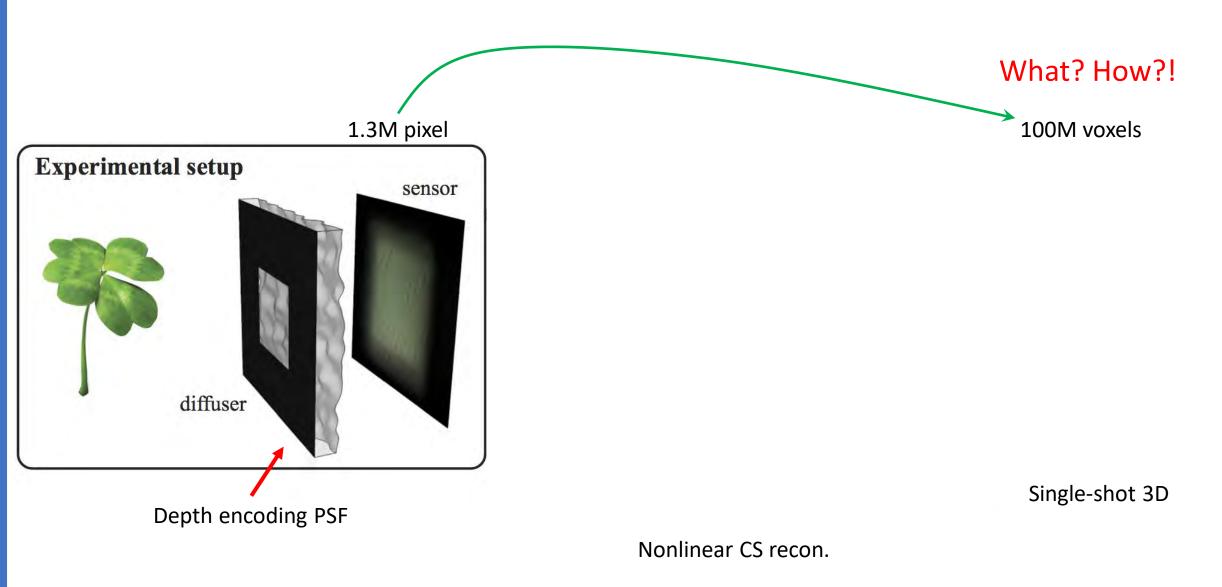
Tutorial 10 – Lensless 3D imaging

Elias Nehme & Yoav Shechtman

05 January 2021



"DiffuserCam" setup



Experimental 3D reconstruction from a snapshot

480x320x128 voxels reconstructed in ~3 mins

Outline

► Depth-encoding PSF

► Nonlinear CS rec.

► Resolution analysis

Outline

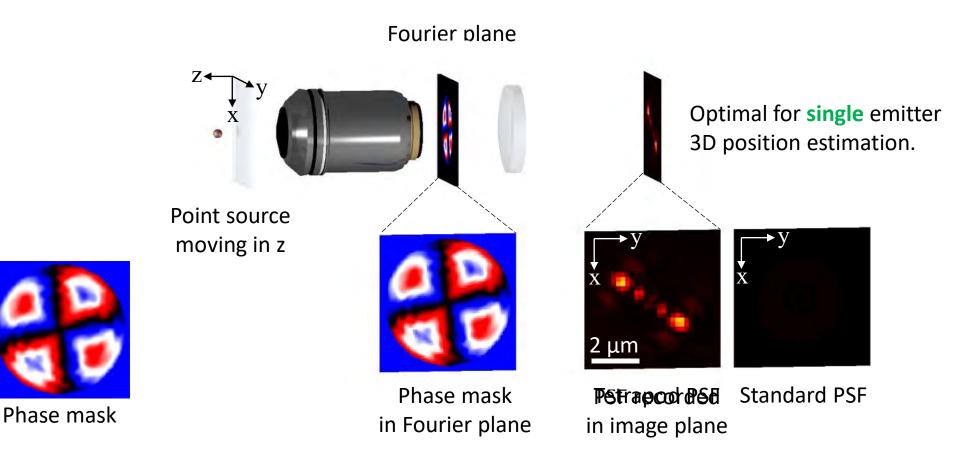
Depth-encoding PSF

► Nonlinear CS rec.

► Resolution analysis

Extending a microscope to 3D: reminder

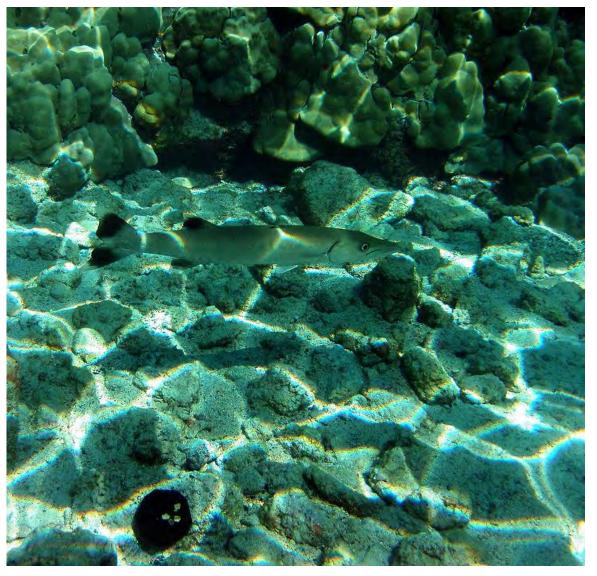
• Standardanisionscropel @ Step avent op the ana bignape aerfoisigntaly is lost



Shechtman et al., Phys. Rev. Letters (2014)

Diffuser-induced caustics PSF

Glass of water

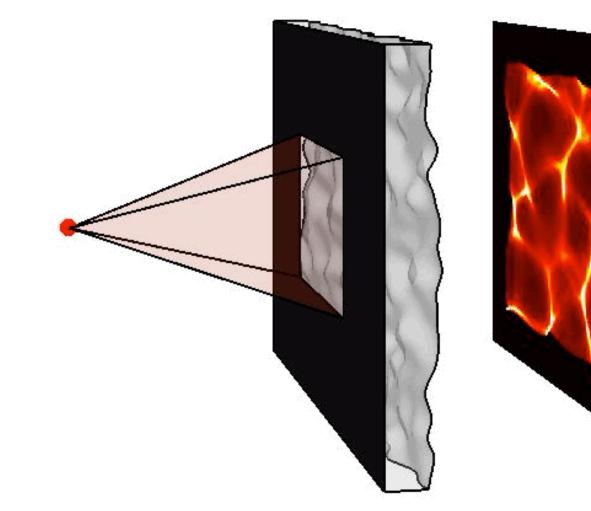


Caustics produced by the surface of water

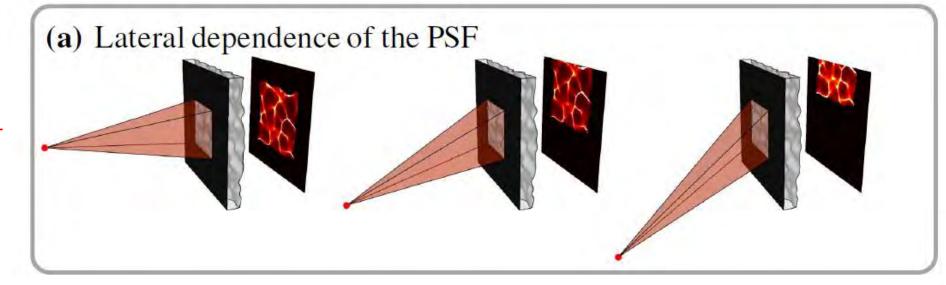
Glass of wine https://en.wikipedia.org/wiki/Caustic_(optics)

Diffuser-induced caustics PSF

- Main idea is to encode depth into the PSF shape
- <u>Question</u>: What kind of assumptions do we need on the PSF to make the inverse problem manageable?
- <u>Answer:</u> we really like convolution models..



Diffuser-induced caustics PSF

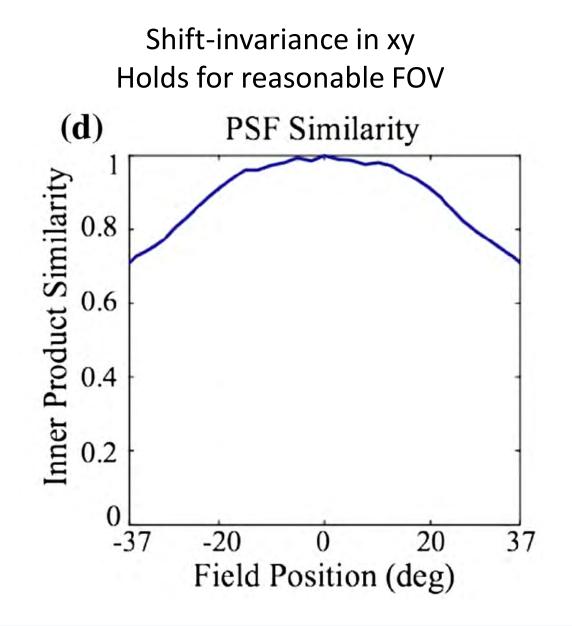


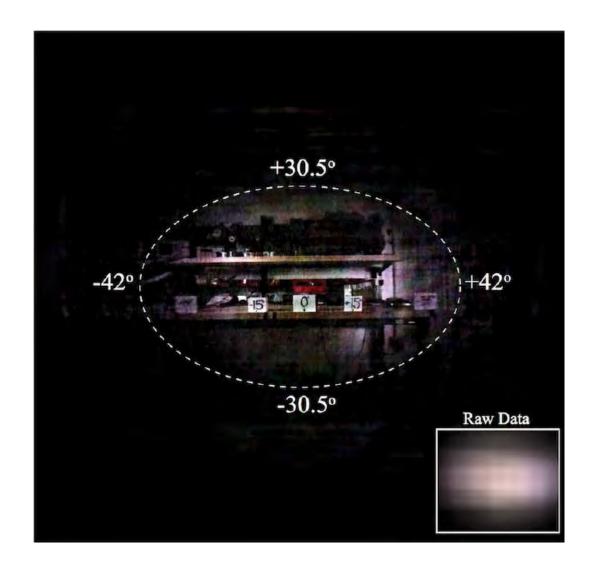
Assumption 1: Shift-Invariant in xy.

Assumption 2: Only Scaling in z.

Hyperfocal plane (35.3 mm) Minimal allowable dist. (9.9 mm)

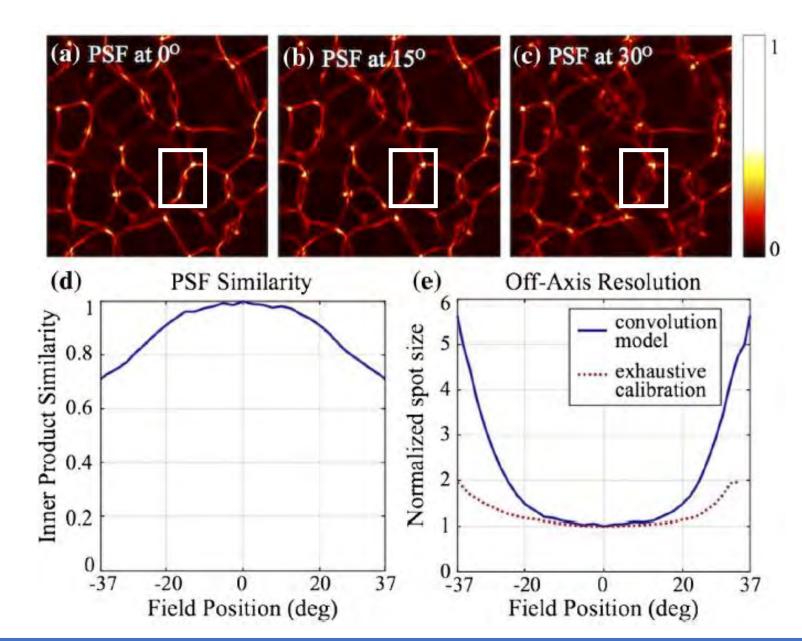
Validity of the assumptions: Shift-invariance



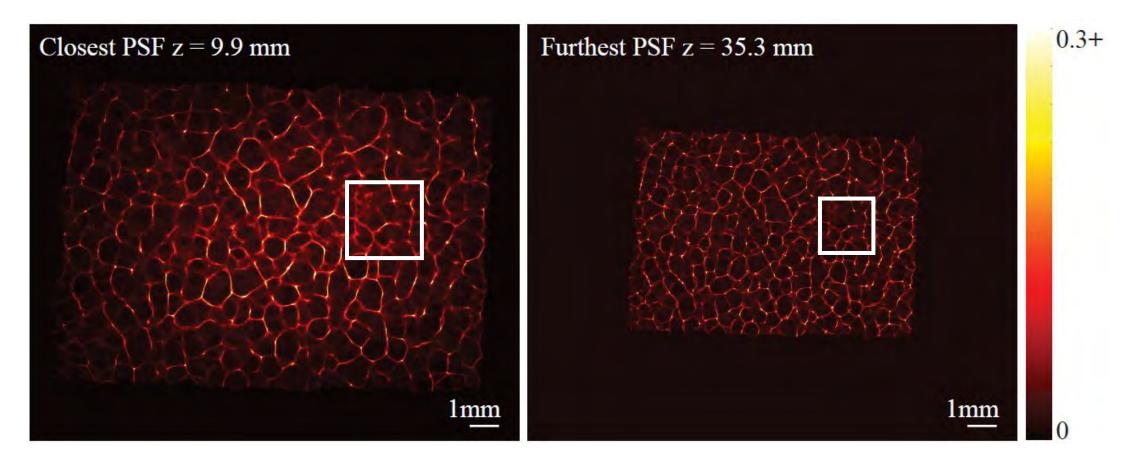


Validity of the assumptions: Shift-invariance

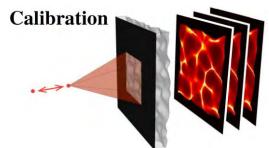
- PSFs at 0 and 15 degress are approximately shifted versions of the same pattern.
- PSFs at 30 has subtle differences.
- Inner products between the on-axis PSF and registered off-axis PSF can quantify the assumption.



Validity of the assumptions: Scaling with depth



- Almost but not exactly \otimes ...How can we fix it?
- Answer: On-axis calibration!



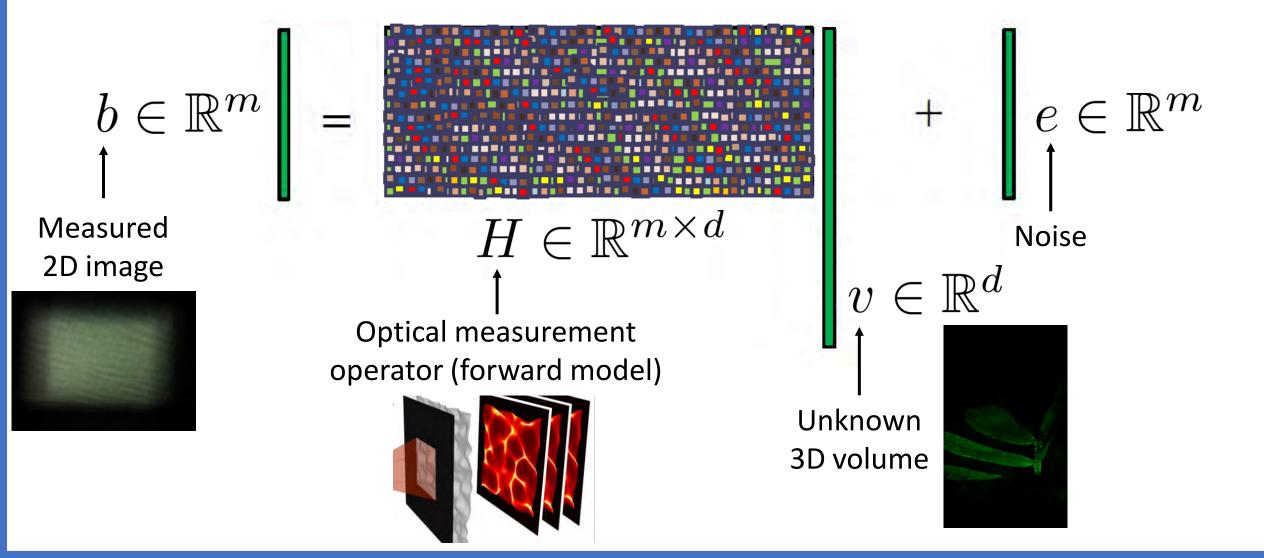
Outline

Depth-encoding PSF

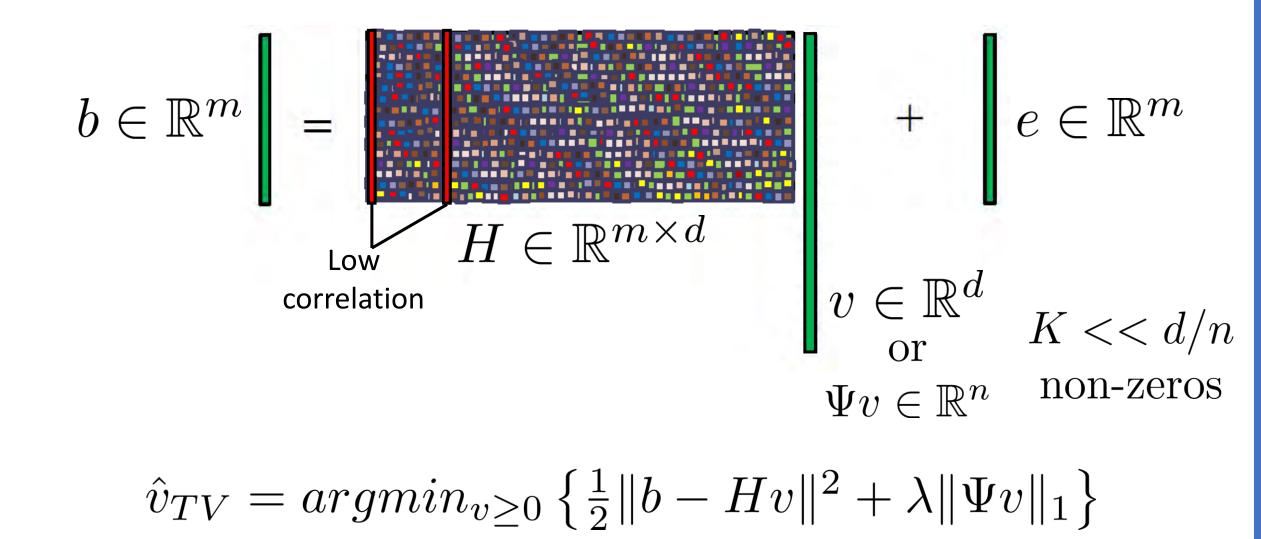
← Nonlinear CS rec.

► Resolution analysis

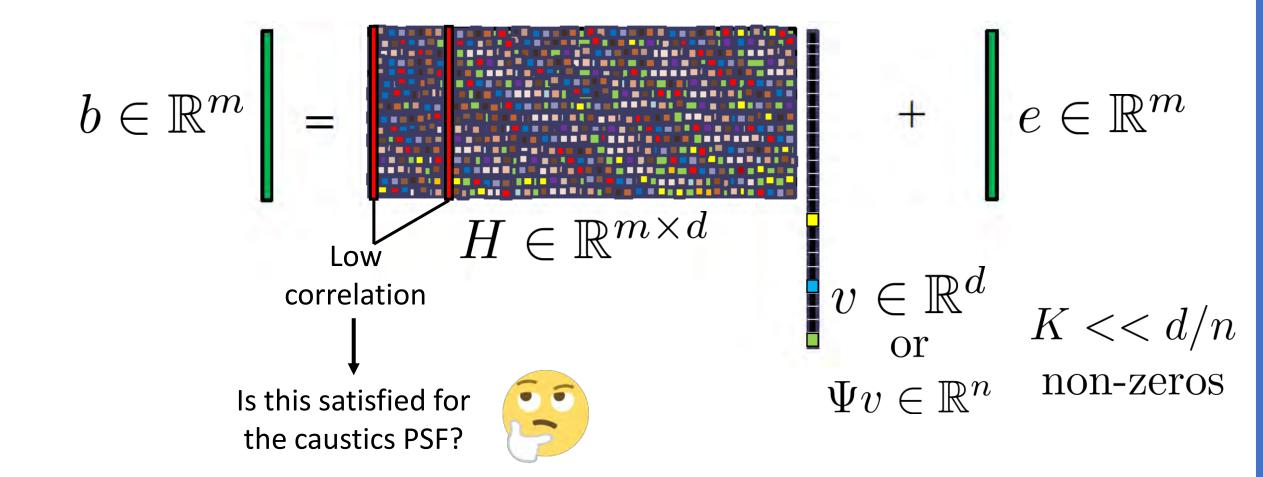
Compressed sensing: nonlinear recovery



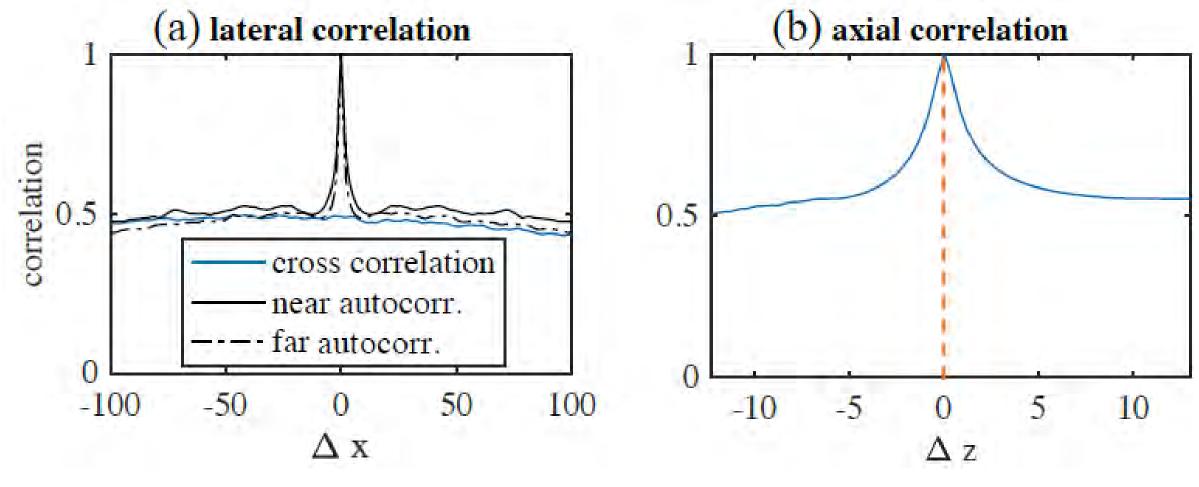
Compressed sensing: nonlinear recovery



Compressed sensing: nonlinear recovery



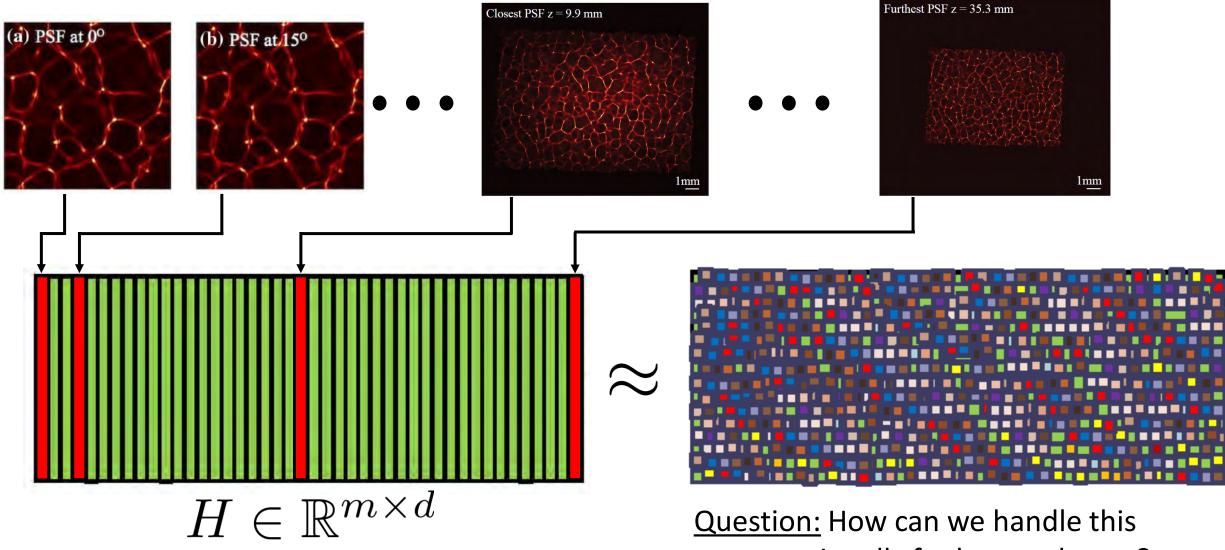
Caustics are approximately not correlated laterally/axially



Caustics at a given depth are unique over shifting

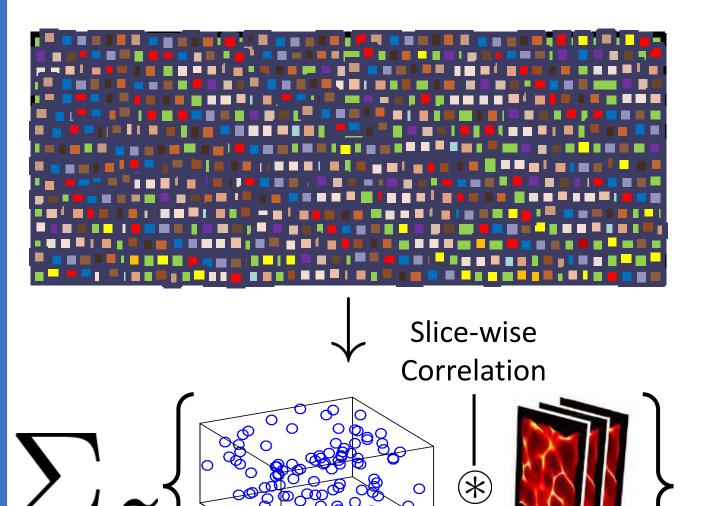
Caustics from two different depths are not similar, even under translation

Caustics forward operator



computationally for large volumes?

Convolutional implementation



(x, y, z)

(x,

 \mathbf{V}

$$\mathbf{b}(x,y) = \Sigma_{z} \left[\mathbf{v}(-x,-y,z) \overset{(x,y)}{*} \mathcal{P}(x,y;z) \right] = \left[\mathbf{v}(-x,-y,z) \overset{(x,y,z)}{*} \mathcal{P}(x,y;-z) \right]_{z=0}$$

<u>Question:</u> How can we implement this efficiently?

Answer: Use 3D FFT!

(All of this is true up to some cropping operator)

Optimization trick

• Variable splitting:

$$(\hat{v},\hat{z}) = \hat{v}_{q,r}g_{pn}i_{n} a_{z} g \left\{ m_{z\sigma_{n}}^{1} \|b\|_{z\sigma_{n}} \|b\|_{z\sigma_{n}}^{2} \|b\|_{z\sigma_{n}}^{$$

• Solve with Half Quadratic Splitting (or Alternating Direction Method of Multipliers)

$$\hat{v}, \hat{z}) = \arg\min_{v, z} \left\{ \frac{1}{2\sigma_n^2} \|b - Hv\|^2 + \lambda p(z) + \frac{\mu}{2} \|v - z\|^2 \right\}$$

- Update $v: v^{k+1} = argmin_v \left\{ \frac{1}{2\sigma_n^2} \|b Hv\|^2 + \frac{\mu}{2} \|v z^k\|^2 \right\}$
- Update z: $z^{k+1} = argmin_z \left\{ \lambda p(z) + \frac{\mu}{2} \| v^{k+1} z \|^2 \right\}$
- Update μ : $\mu_{k+1} = \gamma \mu_k$

In the paper: $p(v) = \|\Psi v\|_1 = TV_{3D}(v)$

Bouman et. Al [2013]

Outline

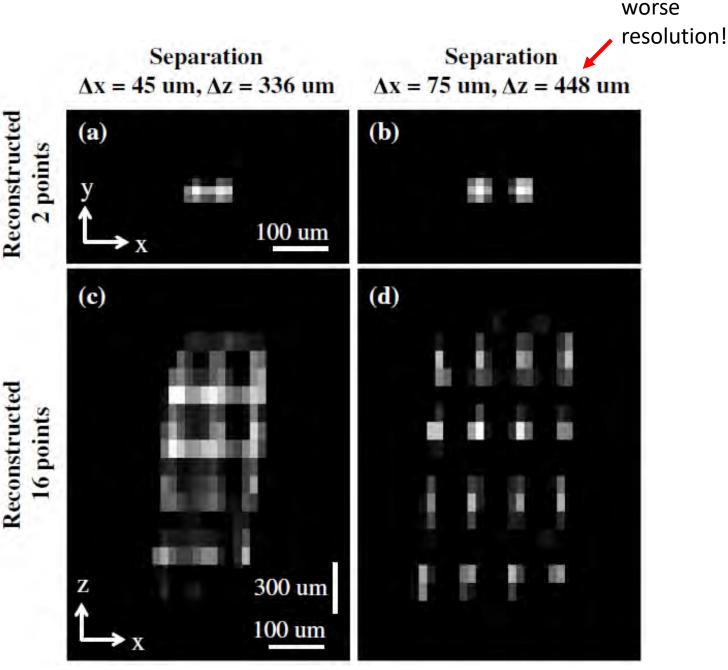
Depth-encoding PSF

Nonlinear CS rec.

Resolution analysis

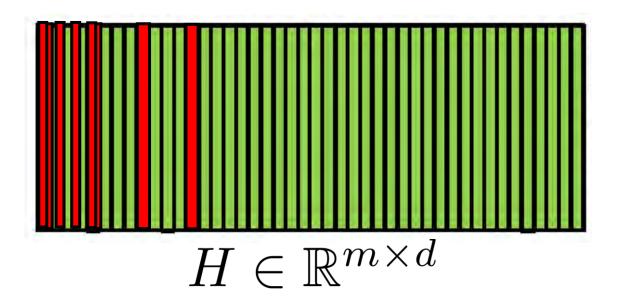
Two-point distinguishability

- Unlike typical cameras, in computational cameras performance depend on scene complexity.
- Two-point distinguishability is not a good metric.
- Non-isotropic resolution



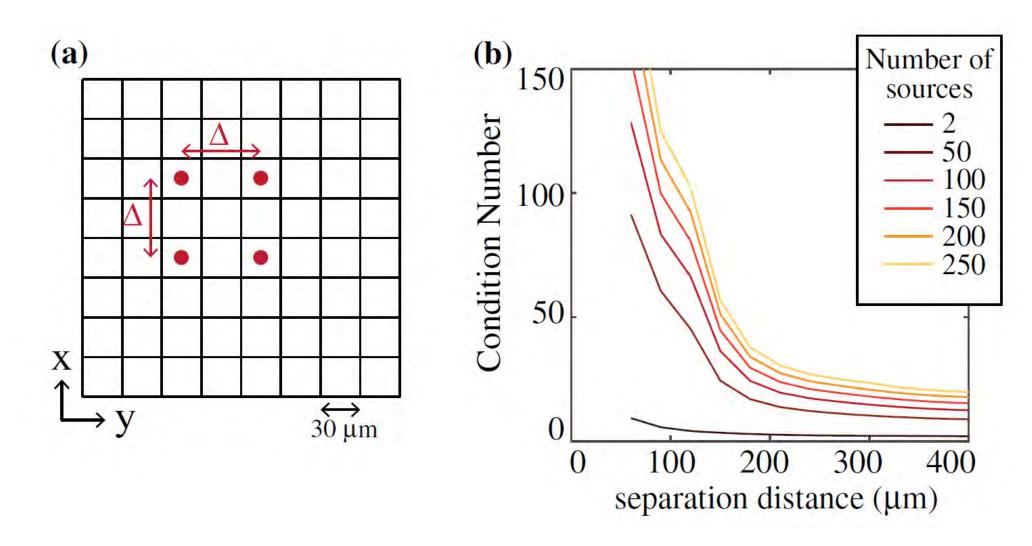
Local condition number

• Main idea: Define resolution through invertibility of the forward model H



• Oracle support assumption:

Local condition number



• Higher condition number = lower resolution

Outline

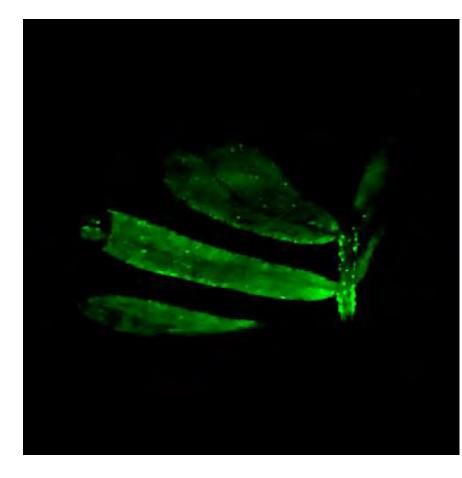
Depth-encoding PSF

Nonlinear CS rec.

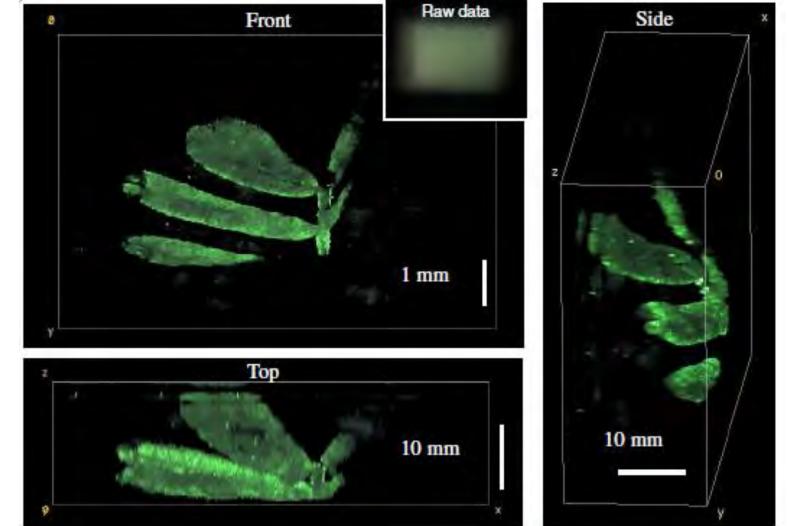
Resolution analysis

Experimental results and extensions

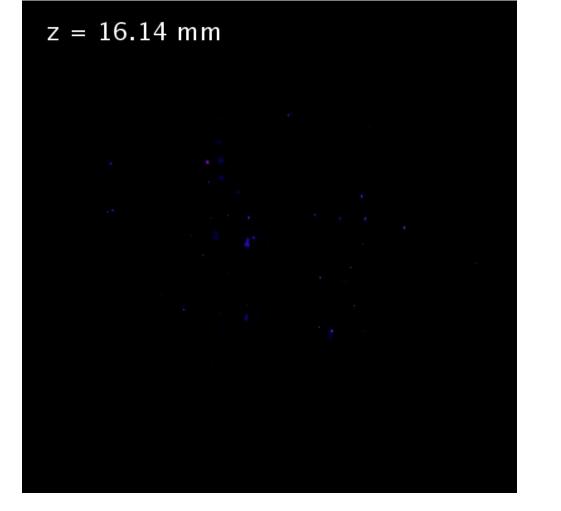
Experimental 3D reconstruction from a snapshot



480x320x128 voxels reconstructed in ~3 mins

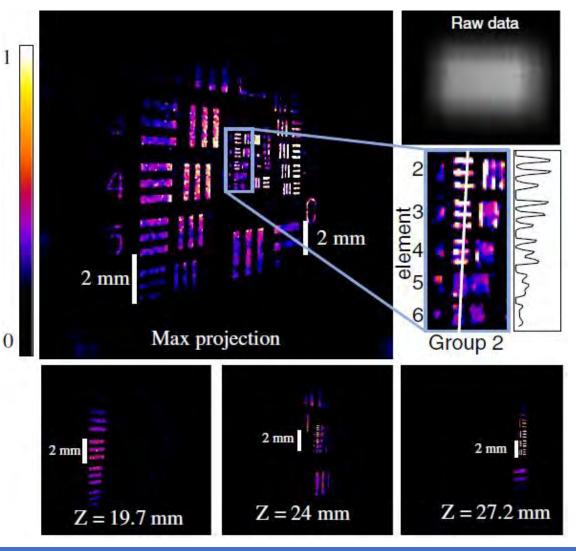


Experimental 3D reconstruction from a snapshot



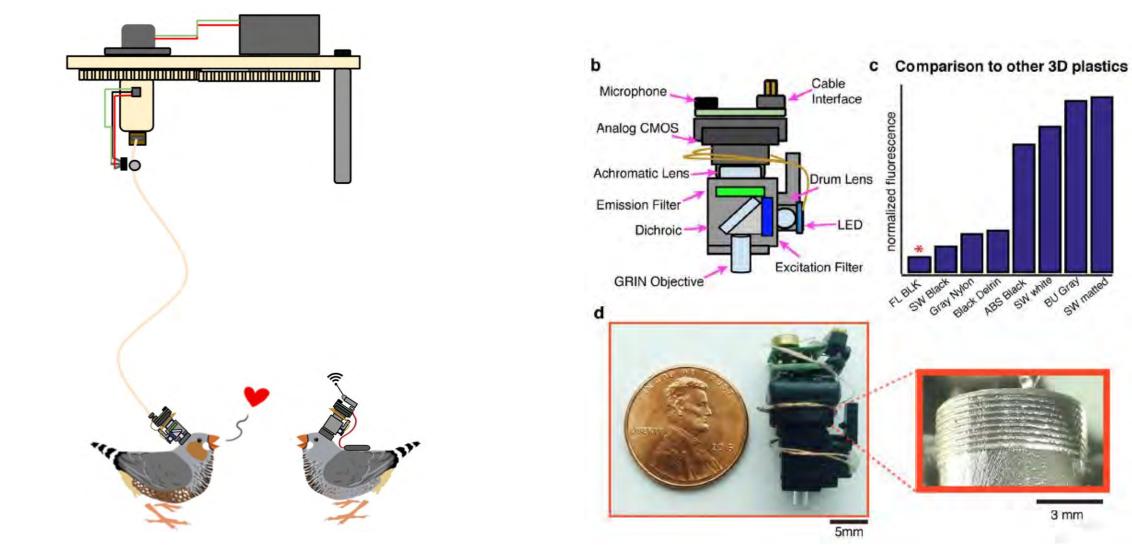
Antipa et al. Optica 5, 1-9 (2018)

640x640x50 voxels reconstructed in ~3 mins



What is a Miniscope?

http://miniscope.org/



https://github.com/gardner-lab/FinchScope

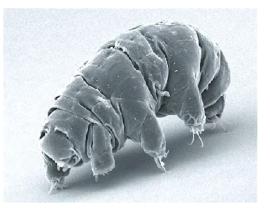
Liberti III et al., J. Neural Eng. 14 (2017)

BUGray

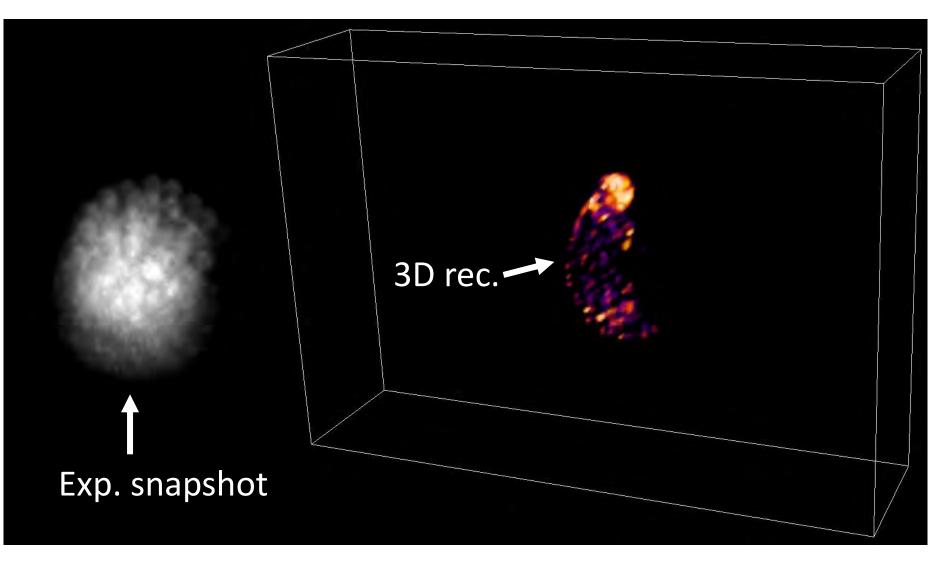
3 mm

SW matter

Freely moving tardigrades



SEM image



Yanny et al. Light: Science & Applications (2020) 9:171

References

Nick Antipa, Sylvia Necula, Ren Ng, and Laura Waller. "Single-shot diffuser-encoded light field imaging." In 2016 IEEE International Conference on Computational Photography (ICCP), pp. 1-11. IEEE, 2016.

Nick Antipa, Grace Kuo, Reinhard Heckel, Ben Mildenhall, Emrah Bostan, Ren Ng, and Laura Waller, "DiffuserCam: lensless single-exposure 3D imaging." *Optica* 5, 1-9 (2018).

Nick Antipa, Patrick Oare, Emrah Bostan, Ren Ng, and Laura Waller. "Video from stills: Lensless imaging with rolling shutter." In 2019 IEEE International Conference on Computational Photography (ICCP), pp. 1-8. IEEE, (2019)

Kyrollos Yanny*, Nick Antipa*, William Liberti, Sam Dehaeck, Kristina Home Laura Waller. Miniscope3D: optimized single-shot miniature 3D fluor

Grace Kuo, Fanglin Linda Liu, Irene Grossrubatscher, Ren Ng, and I random microlens diffuser," Opt. Express 28, 8384-8399 (2020)

Fanglin Linda Liu, Grace Kuo, Nick Antipa, Kyrollos Yanny, and Laur field microscopy with a diffuser," Opt. Express 28, 28969-28986 (202

Kristina Monakhova*, Kyrollos Yanny*, Neerja Aggarwal, and Laura hyperspectral imaging with a spectral filter array," Optica 7, 1298-13

Build your own DiffuserCam: Tutorial

Build-your-own tutorial -

One of the best things about DiffuserCam is that it is easy to build your own! We provide a guide on how to build your own lensless camera for 2D photography. We recommend using a Raspberry Pi camera with scotch tape as the diffuser. We will also walk you through the algorithms, step-by-step, in an iPython notebook.

Gallery

Code -

Want a short overview of all of the steps? Check out our quick-start guide. See below for more detailed instructions and links to all resources.

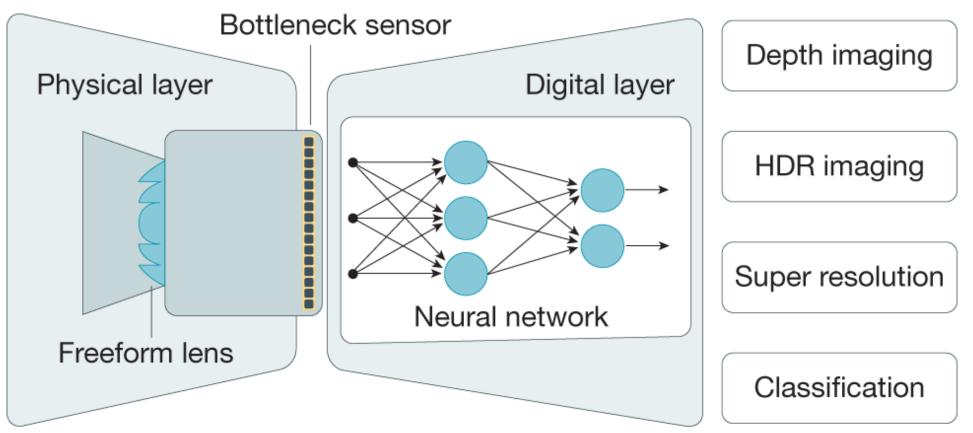
Questions or feedback? We'd also love to hear about any projects that you create using this tutorial! Feel free to contact the authors, Camille Biscarrat (camei *at* berkeley *dot* edu), Shreyas Parthasarathy (shreyas *dot* partha *at* berkeley *dot* edu), Grace Kuo (gkuo *at* berkeley *dot* edu), and Nick Antipa (nick *dot* antipa *at* berkeley *dot* edu).

Department of Biomedical Engineering, Technion Computational optical imaging 336547

Tutorial 11+12 – Deep Optics

Elias Nehme & Yoav Shechtman

12 January 2021



Computational Imaging = Co-design of acquisition + computation

Computational Imaging

Computational Imaging = Co-design of acquisition + computation

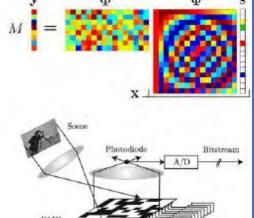
HDR Imaging [Mann, Devebec, Nayar,...]

EDOF

[Dowski,Nayar,...]

Light Fields

[Levoy,...]



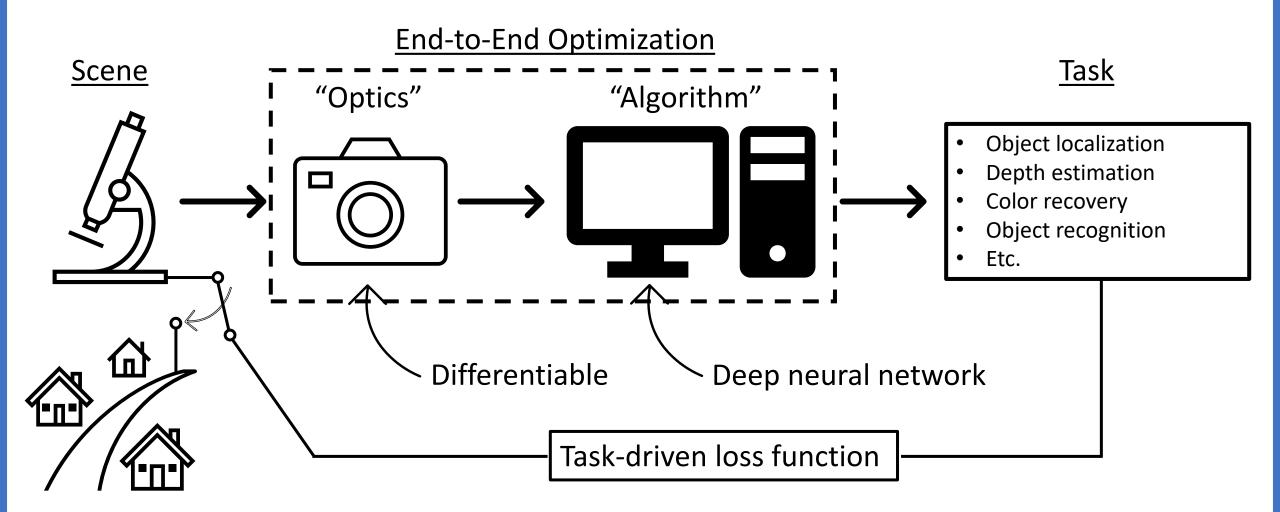
Compressive Imaging [Baraniuk,...]

Computational 45 극는 Imaging computation optics sensing

Tutorial 5+6, and HW1

Peng et al., ACM SIGGRAPH (2020)

Deep Computational Cameras = "Deep Optics" = "Neural Sensors"



Outline

► Autoencoder interpretation

► Learning dense 3D imaging

► Generality to higher level tasks

► Multi-measurement systems

Beyond microscopy

Outline

Autoencoder interpretation

Learning dense 3D imaging

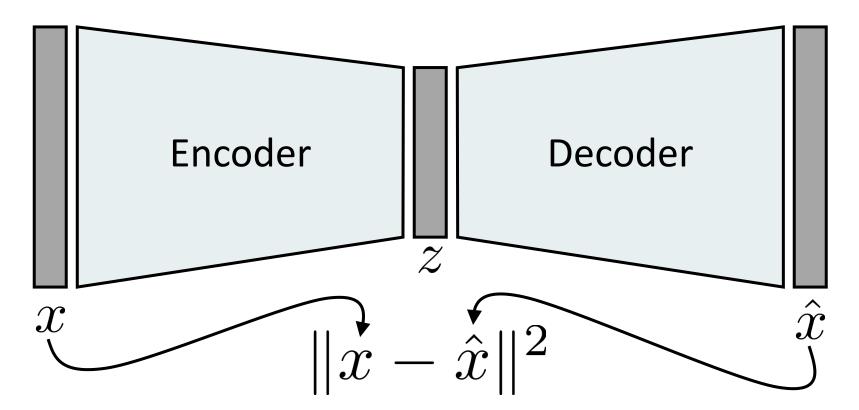
Generality to higher level tasks

Multi-measurement systems

Beyond microscopy

Autoencoders: Background

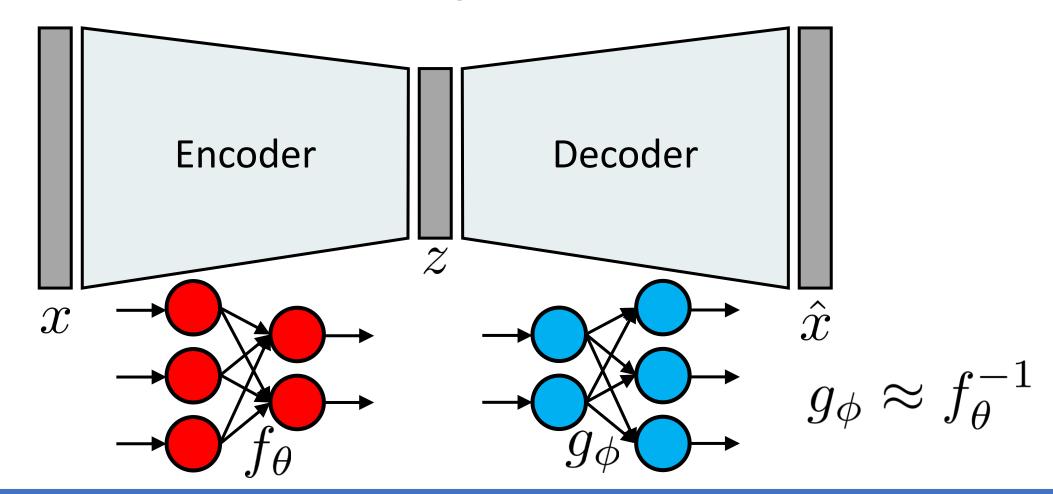
• Unsupervised approach for learning a lower-dimensional feature representation from unlabeled training data



• Train such that features can be used to reconstruct original data

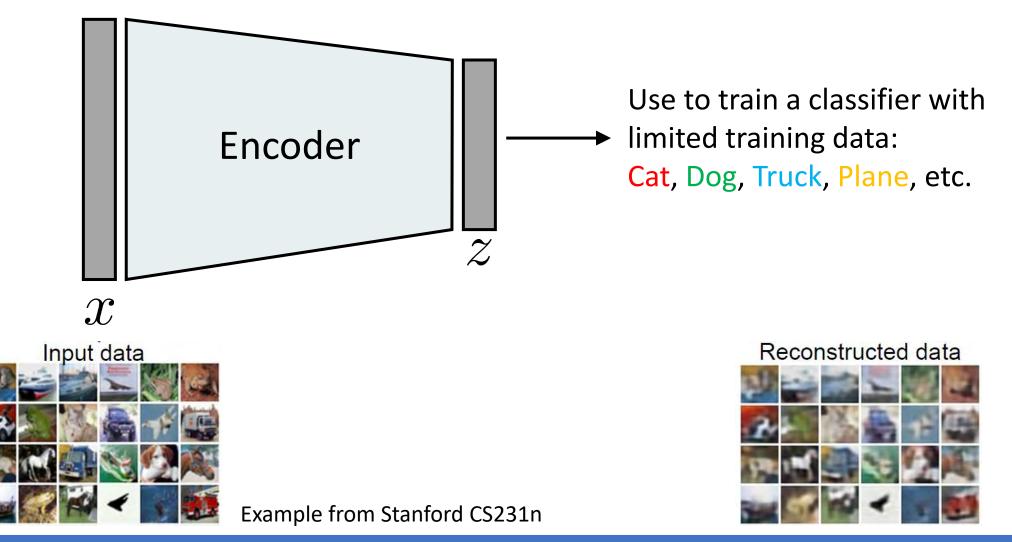
Autoencoders: Background

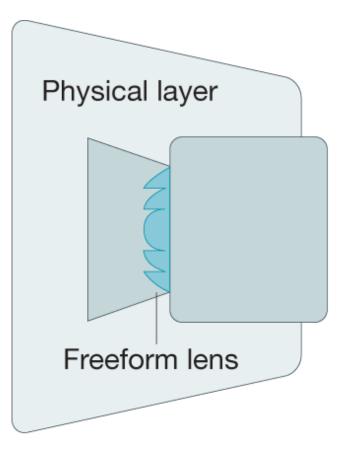
• Unsupervised approach for learning a lower-dimensional feature representation from unlabeled training data

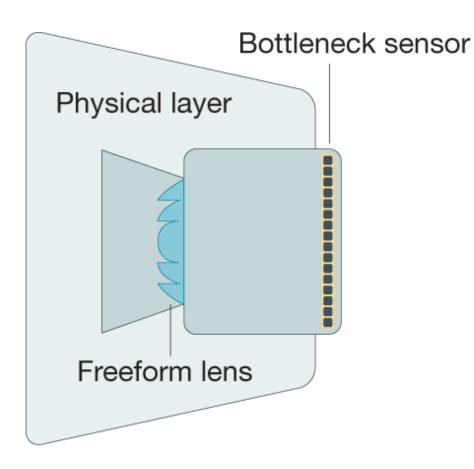


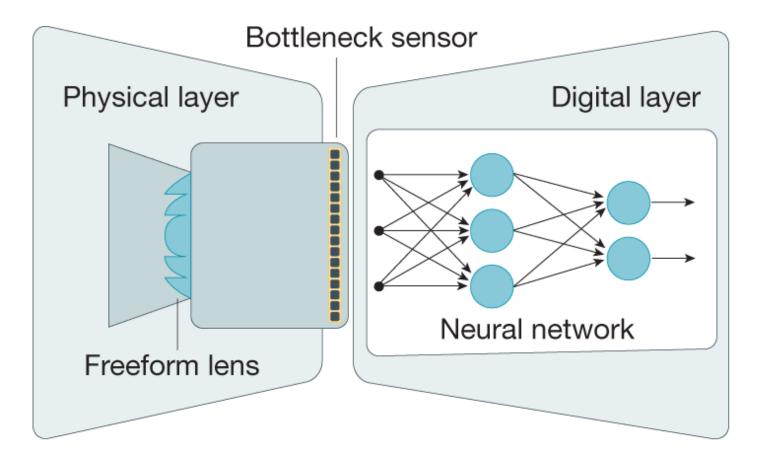
Autoencoders: Background

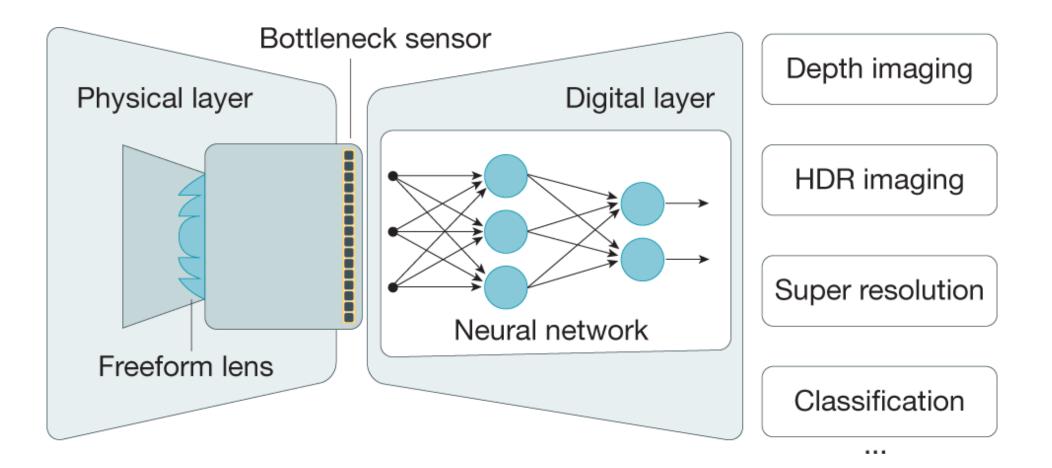
• Learned lower-dimensional representation can be used for classification



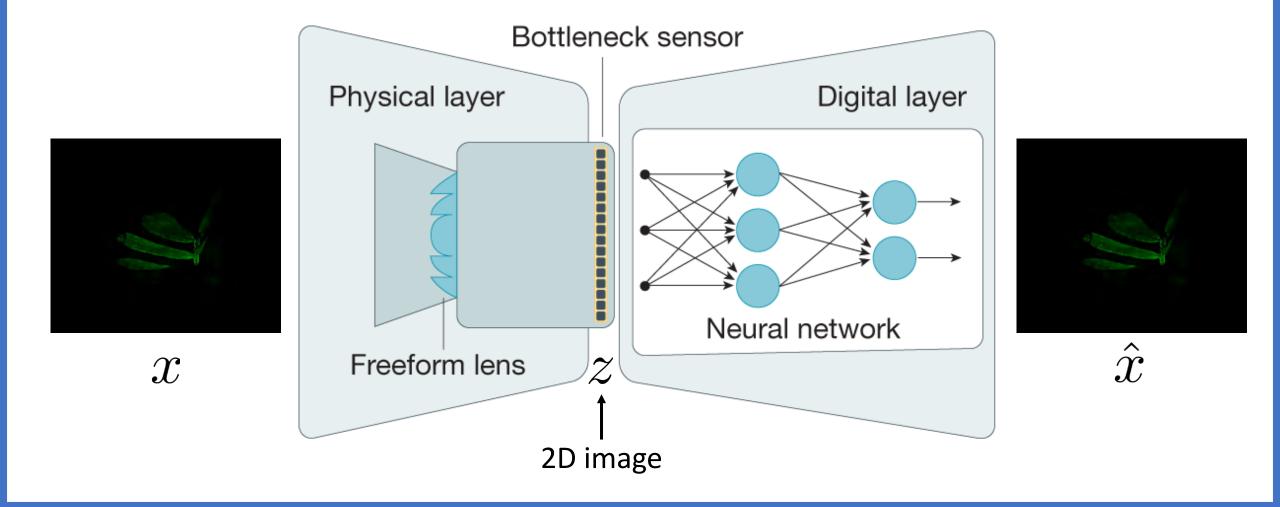




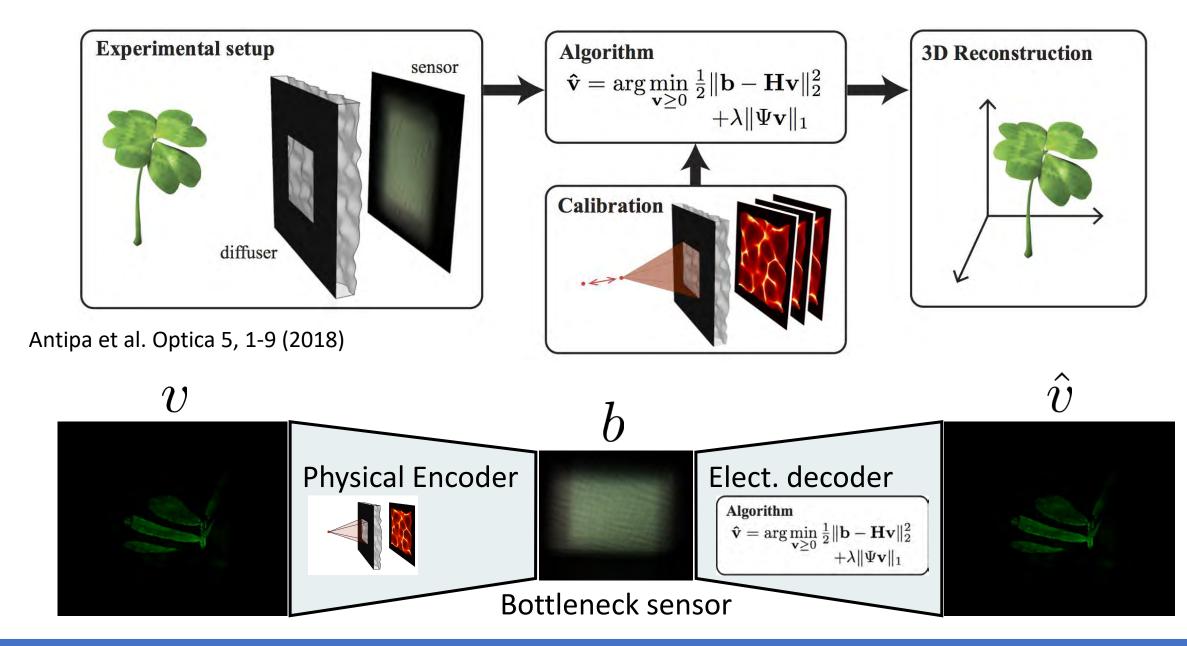




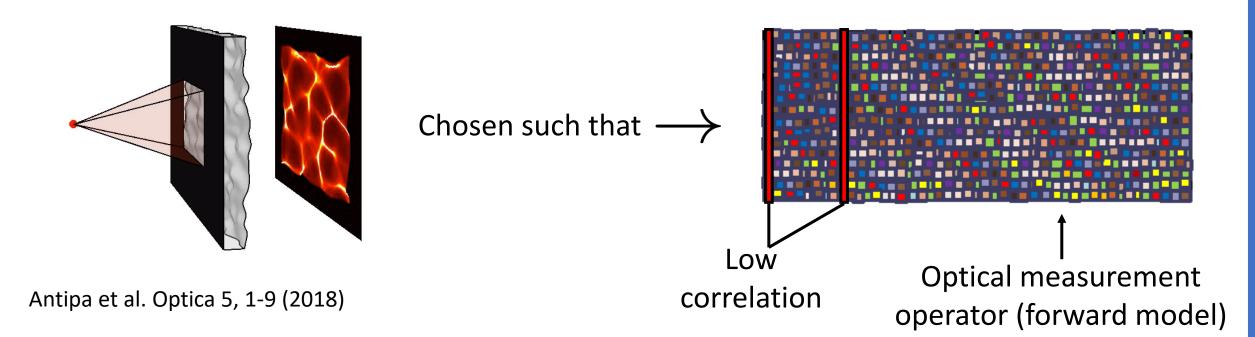
• For example, we can optimize the "Freeform" lens for depth imaging



Analogy to DiffuserCam



Main difference compared to DiffuserCam



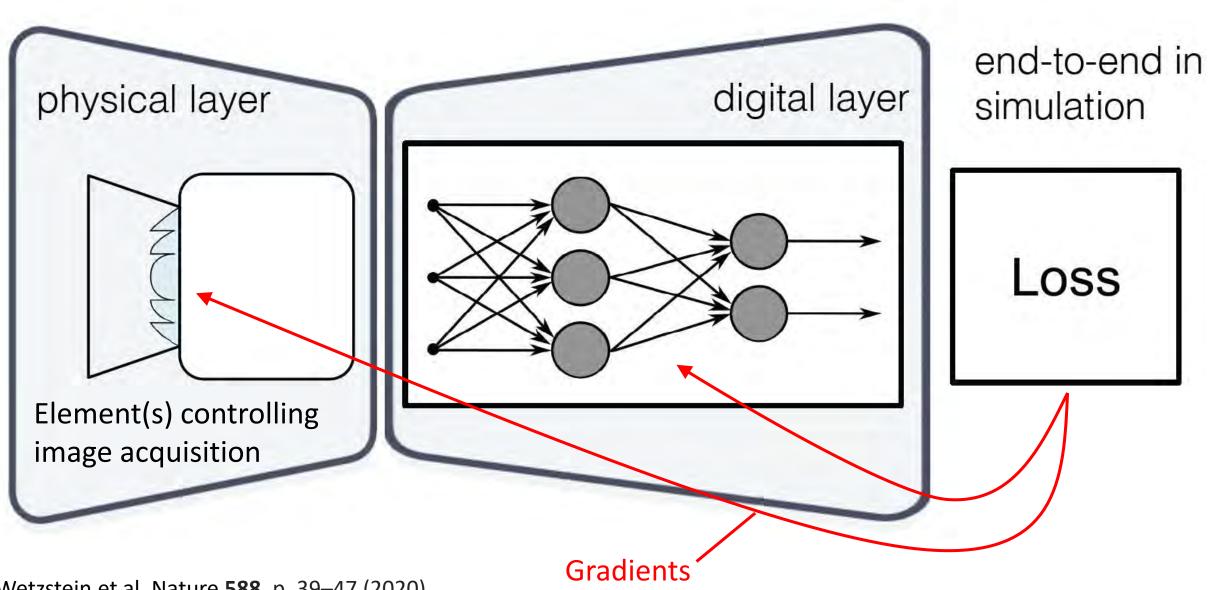
<u>Question 1:</u> How should we design the physical element if the algorithm is not based on compressed sensing theory?

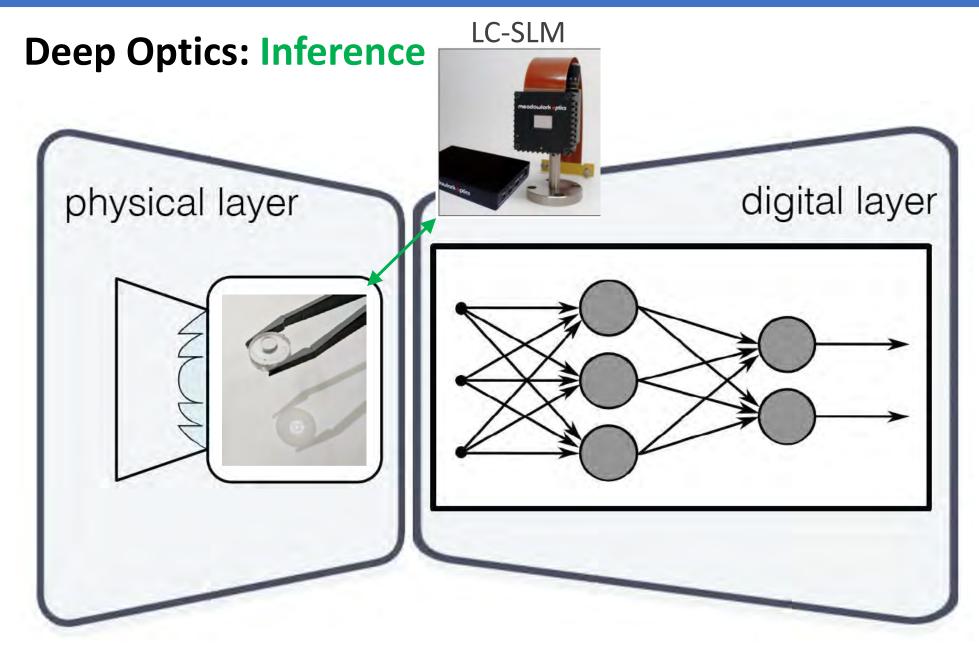
<u>Question 2:</u> How can we incorporate complex prior knowledge on the data?

<u>Question 3:</u> Can this concept be extended to higher level tasks like classification?

Answer: Deep Optics!

Deep Optics: Training





Fabricate or implement lens or other physical components, and run network on measurements

Outline

Autoencoder interpretation

Learning dense 3D imaging

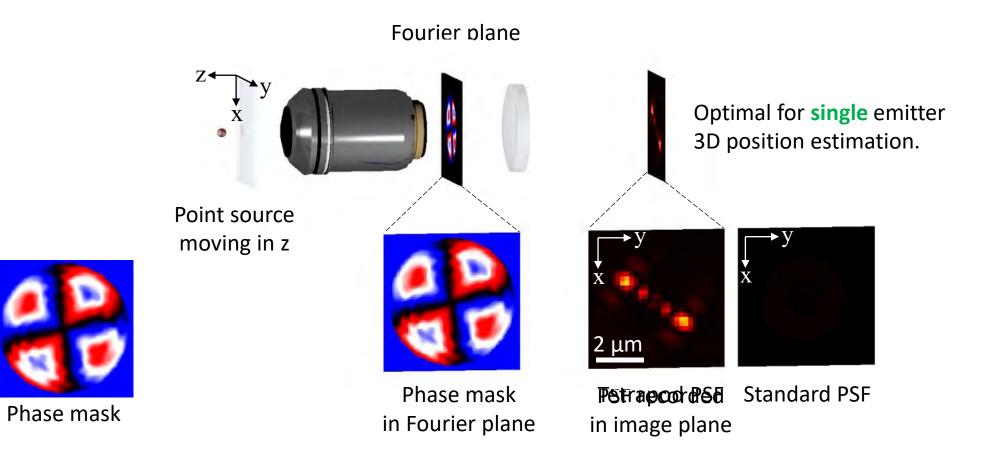
Generality to higher level tasks

Multi-measurement systems

Beyond microscopy

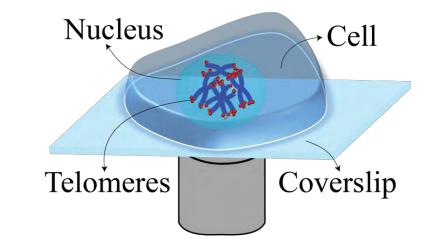
Extending a microscope to 3D: reminder

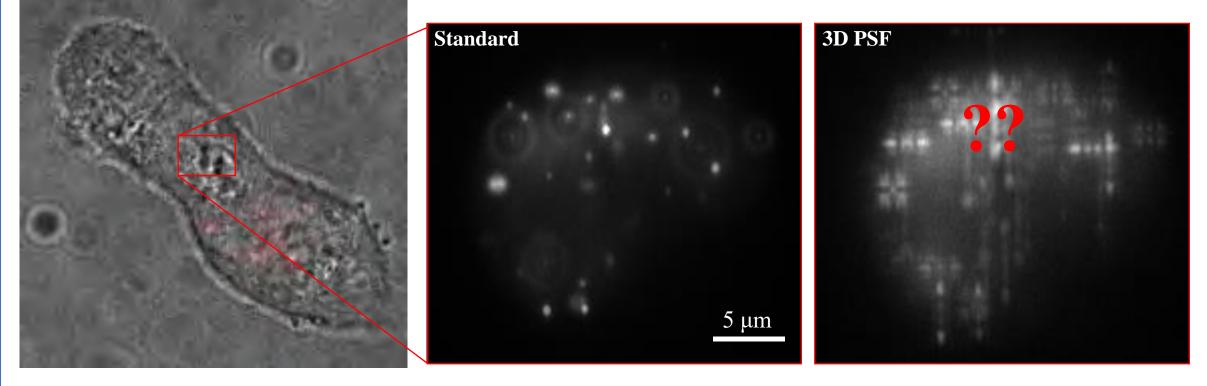
• Standadanis do scopel & Stepavent opthe ans bignape auf disignaly is lost



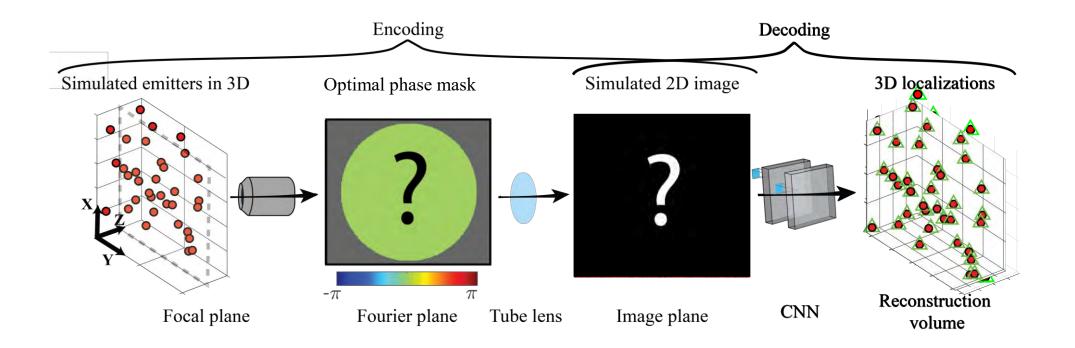
Shechtman et al., Phys. Rev. Letters (2014)

Sleep and cancer research require 3D tracking of telomeres in the nucleus of live cells





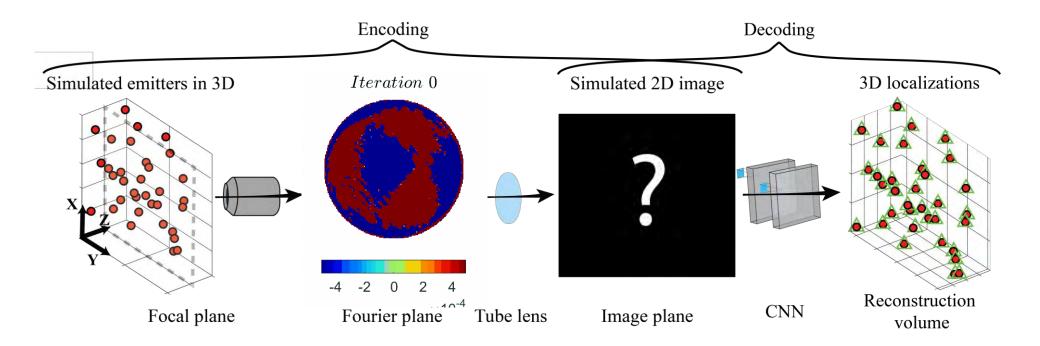
What is the optimal PSF for high density imaging?



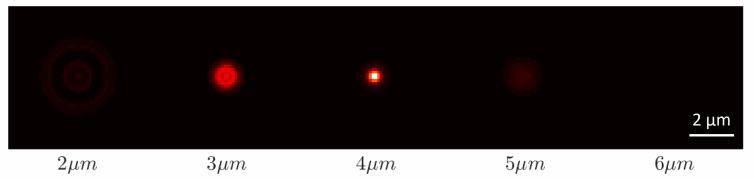
Answer: Let the net design it via backpropagation!

Nehme et al., Nature Methods (2020)

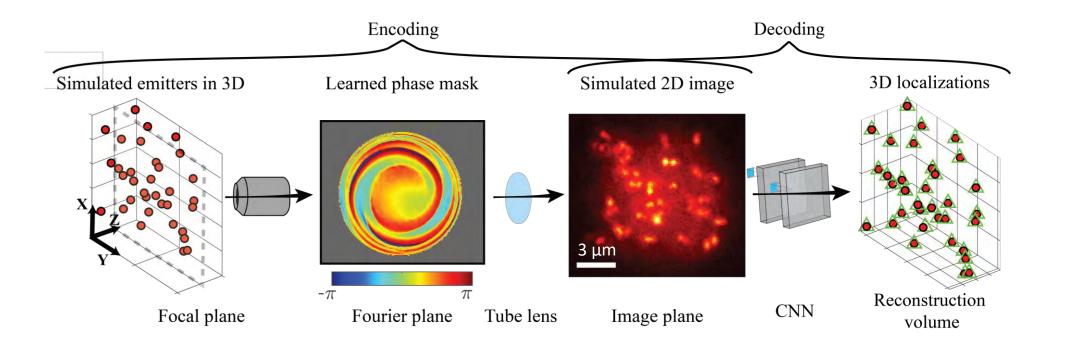
What is the optimal PSF for high density imaging?



Point Spread Function $\rightarrow z$



What is the optimal PSF for high density imaging?

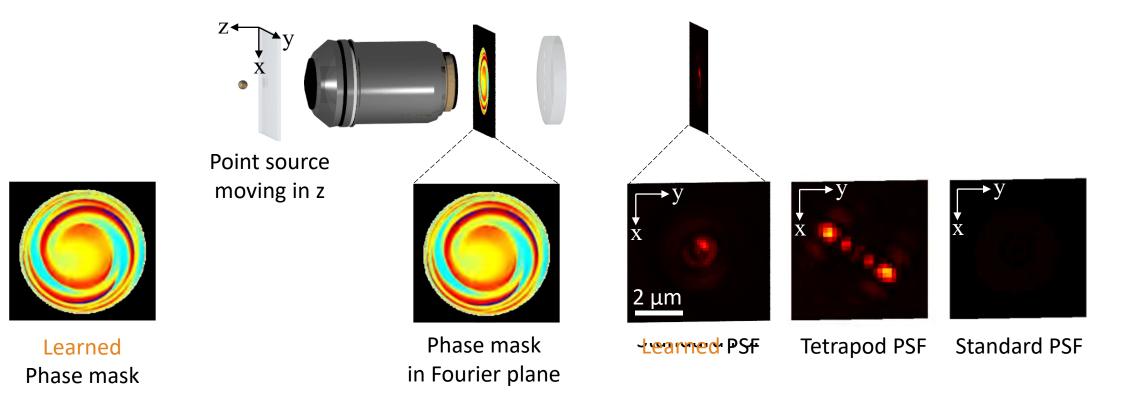


Put simply: The net designs its favorite PSF in order to perform best at decoding high density of emitters, thereby jointly optimizing the optics (encoding) and the localization algorithm (decoding)!

Nehme et al., Nature Methods (2020)

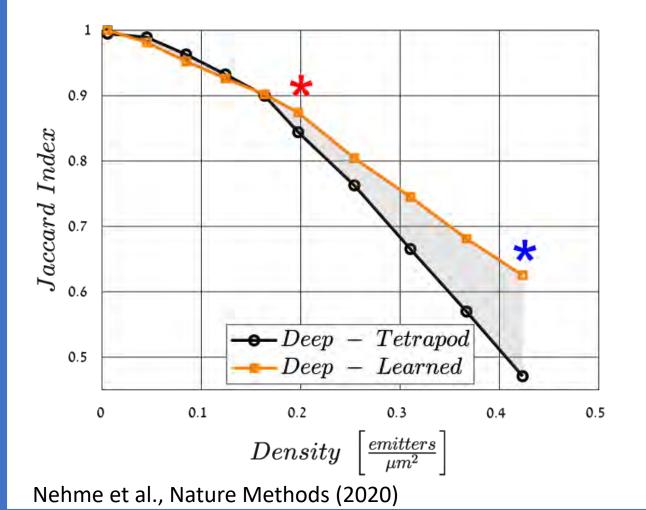
Learned phase mask and PSF

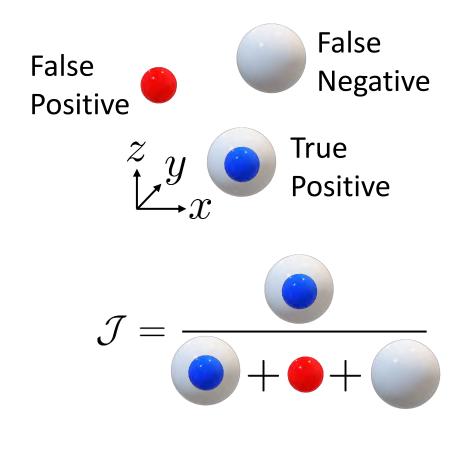
• Resembles familiar PSFs at different axial ranges



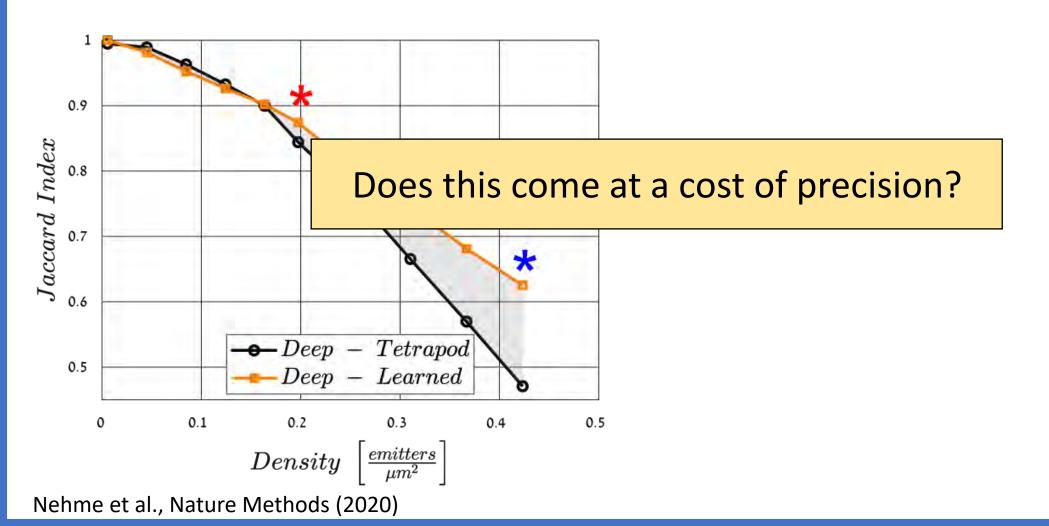
Nehme et al., Nature Methods (2020)

Tetrapod vs. Learned PSF

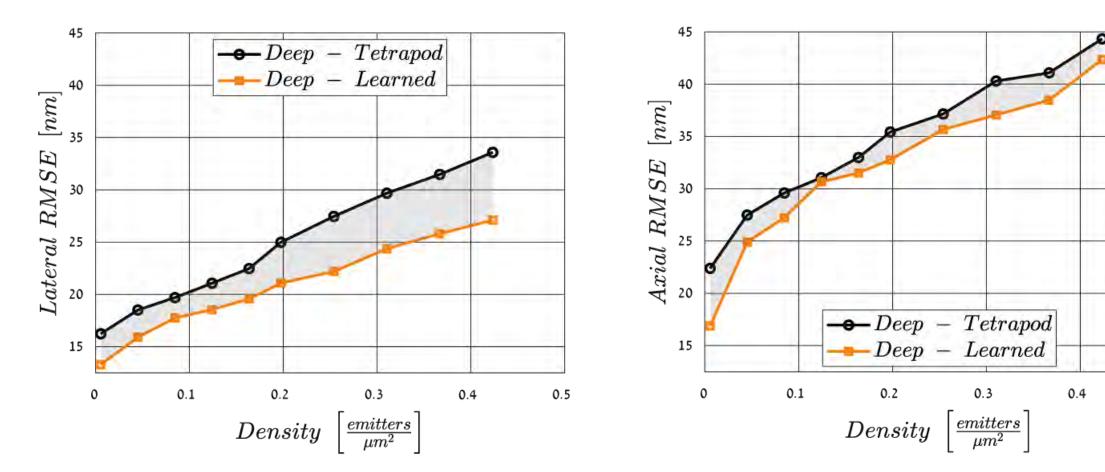




Tetrapod vs. Learned PSF



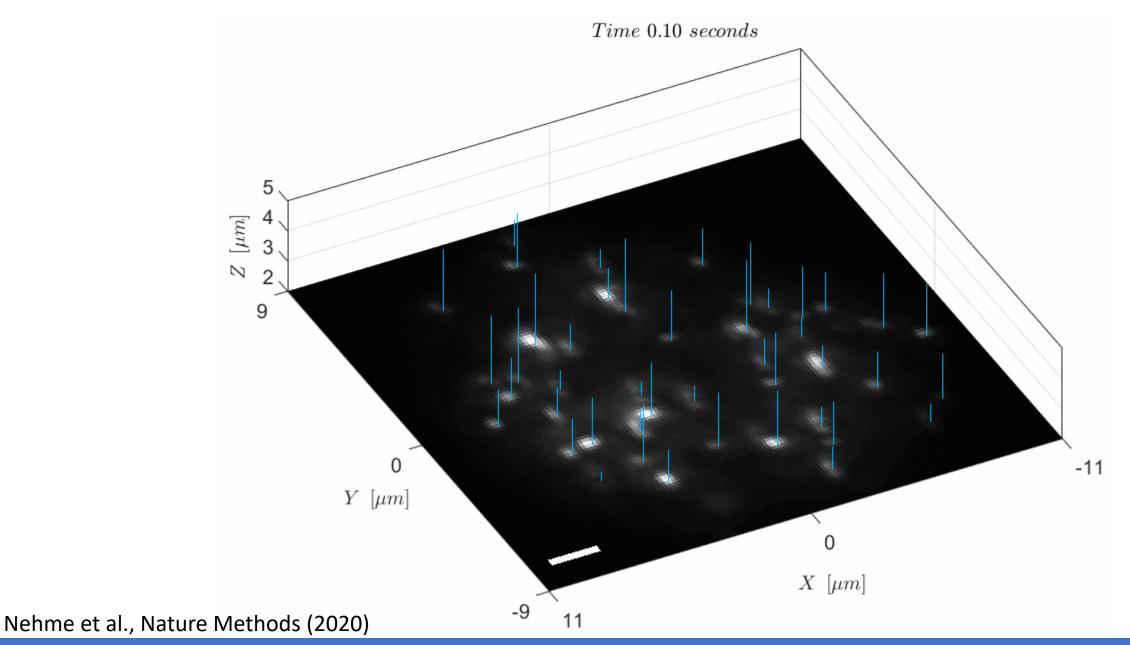
Tetrapod vs. Learned PSF



0.5

Nehme et al., Nature Methods (2020)

Live cell 3D tracking with the Learned PSF



Outline

Autoencoder interpretation

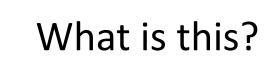
Learning dense 3D imaging

Generality to higher level tasks

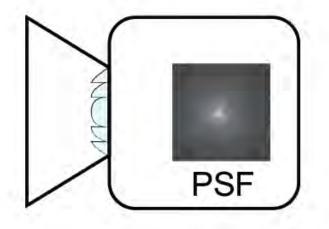
Multi-measurement systems

Beyond microscopy

Objective: Solve CV problem on scene

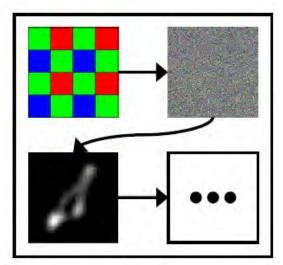


Step 1: Build camera



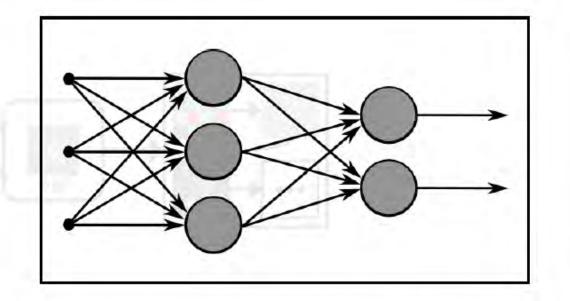
Optimize optics to minimize aberrations: Blur/spot size, chromatic aberrations, distortions, ...

Step 2: Image Signal Processing (ISP)

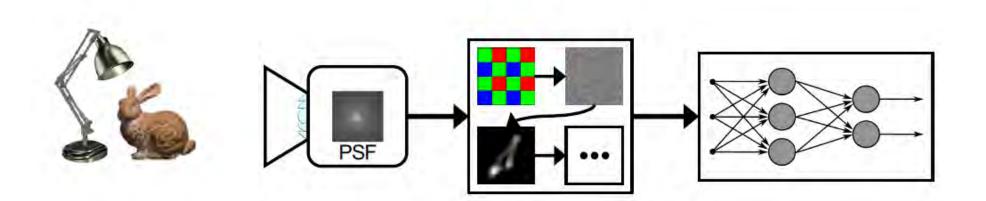


Maximize PSNR: Demosaicking, Denoising, Deblurring, ...

Step 3: CNN for Semantic task



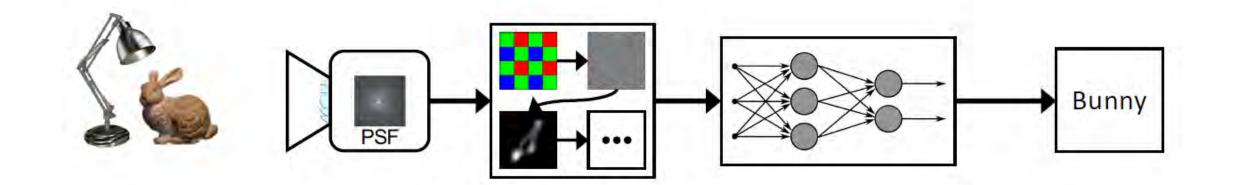
Minimize semantic loss: classification error, segmentation error, ...



Peng et al., ACM SIGGRAPH (2020)

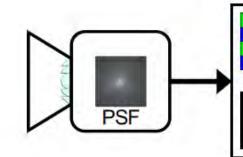
. . .

It works!



Prior work on optimizing each part of pipeline

BM3D, NLM, HQS, Wiener, ...



Wavefront coding, Diffractive Achromat,

...

Alexnet, VGG19, Yolo, Densenet,

...

Bunny

Why not optimize sensors for classification?

PSF

The pipeline is differentiable

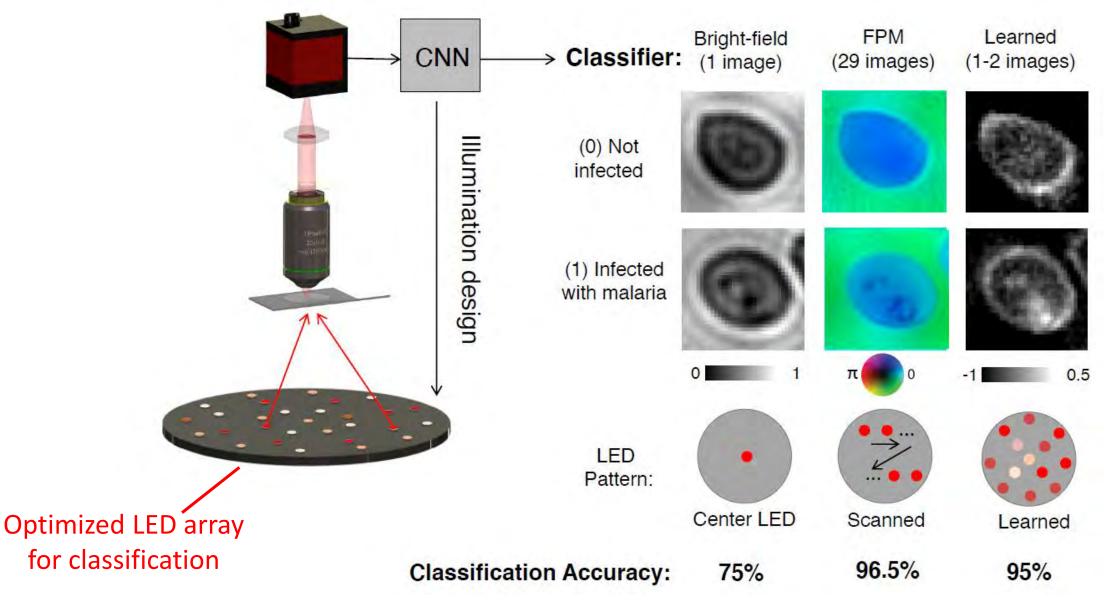
Bunny

classification

Loss function

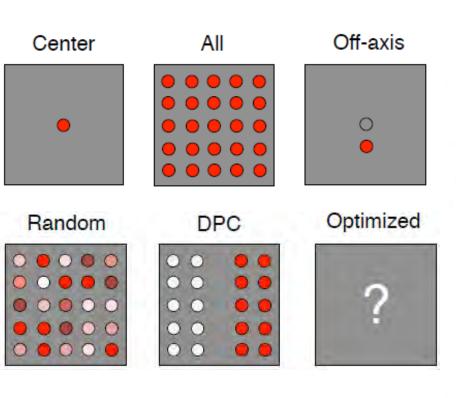
Optimize the entire thing end-to-end for classification: Optics, Bayer Pattern, Demosaicking, Deblurring, Denoising, Feature Extraction, Classifier...

Optimizing microscopes for malaria classification



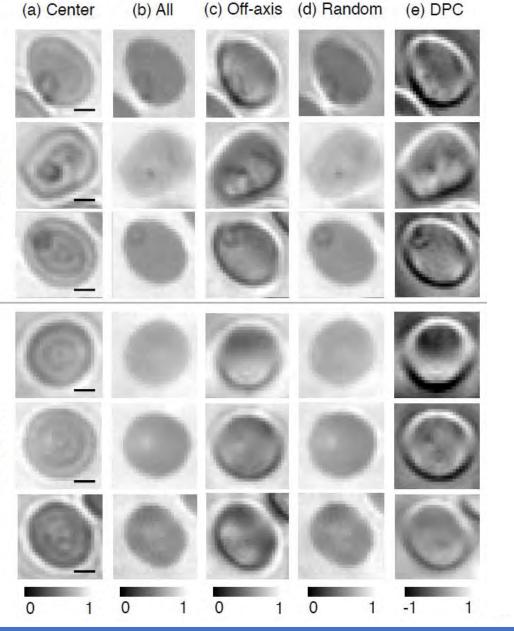
Horstmeyer et al., arXiv (2017)

Optimizing microscopes for malaria classification

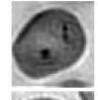


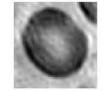
R. Horstmeyer et al., arXiv (2017)

Infected



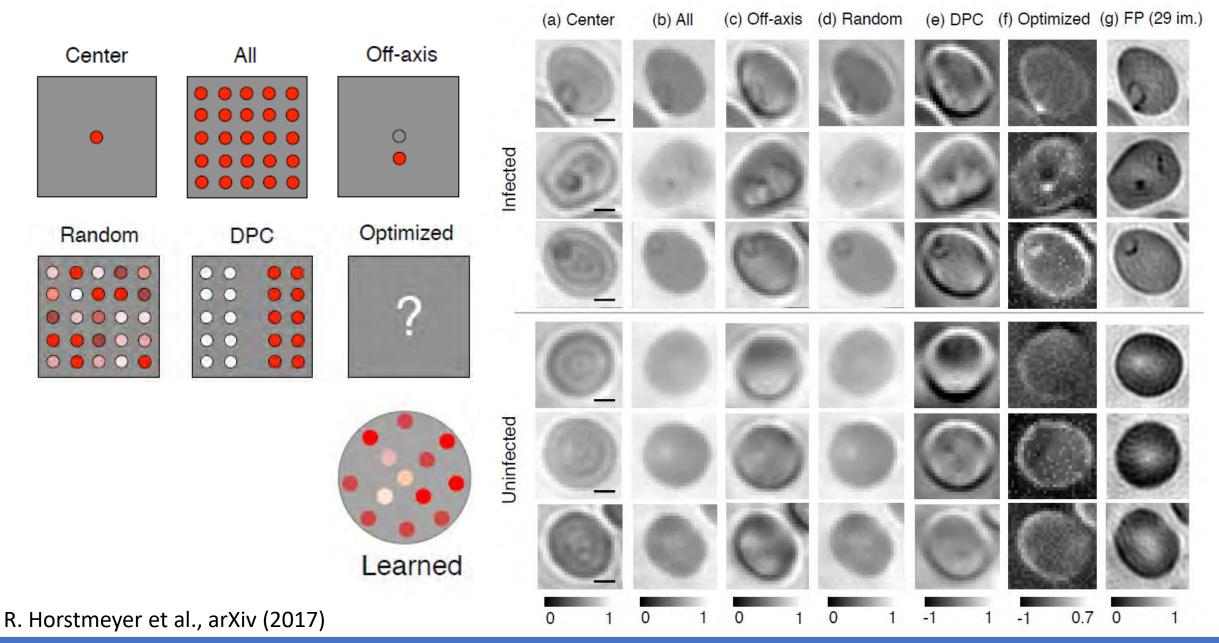
(g) FP (29 im.)



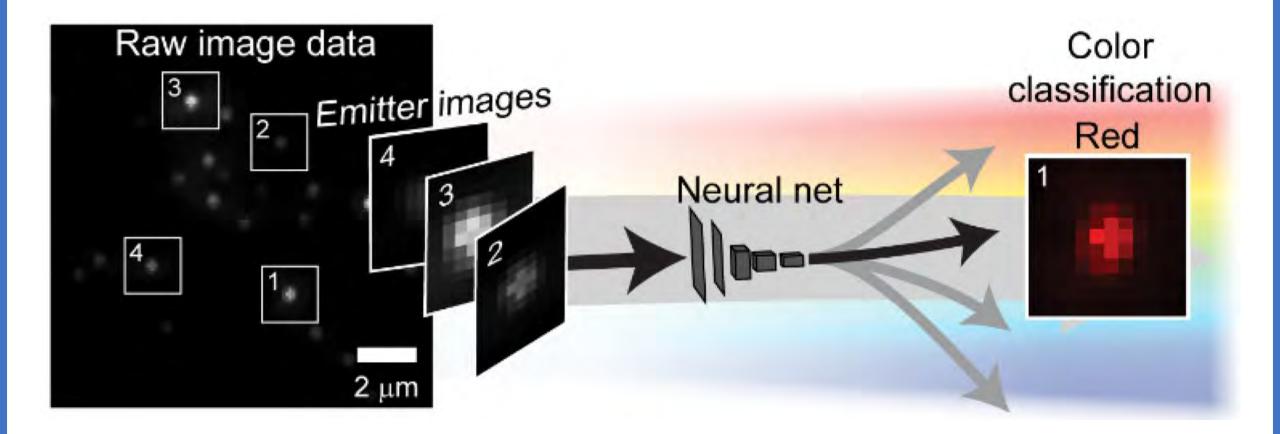


0 1

Optimizing microscopes for malaria classification

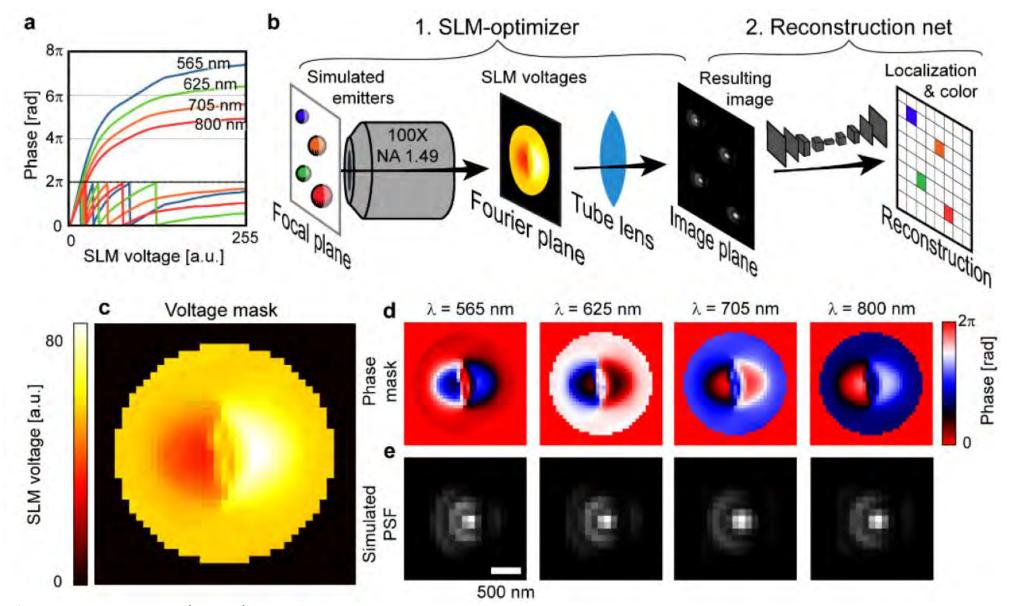


Similar ideas can be used for single-emitter color classification



Hershko et al., Optics Express (2019)

Similar ideas can be used for single-emitter color classification



Hershko et al., Optics Express (2019)

Outline

Autoencoder interpretation

Learning dense 3D imaging

Generality to higher level tasks

Multi-measurement systems

Beyond microscopy

Cameras are everywhere!

iPhone 11 Huawei P20 Pro

Galaxy A9

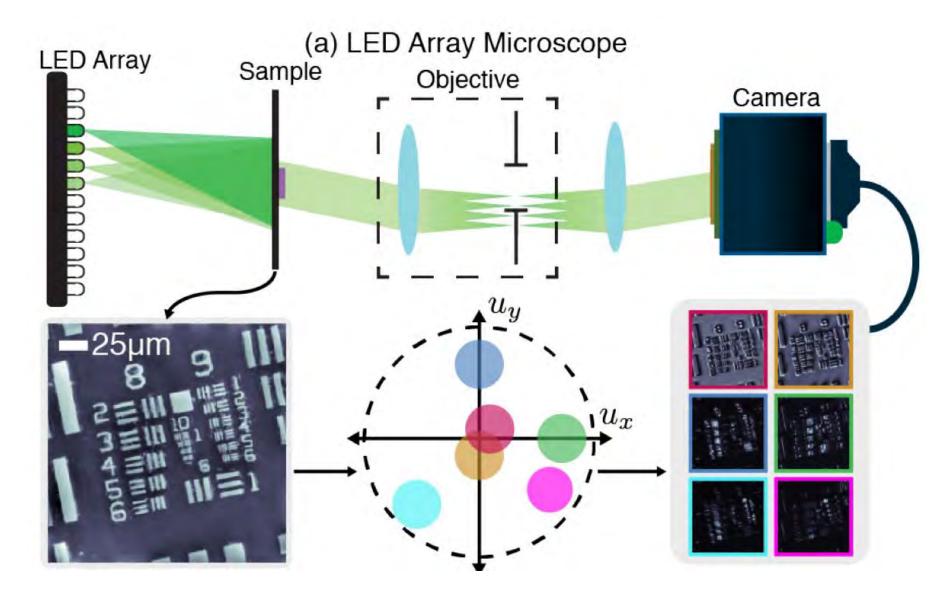
Nokia 9

<u>Question 1:</u> Can we design cameras with multiple acquisitions to produce the final result? Yes!

<u>Question 2:</u> Can we design multiple cameras simultaneously? Yes!

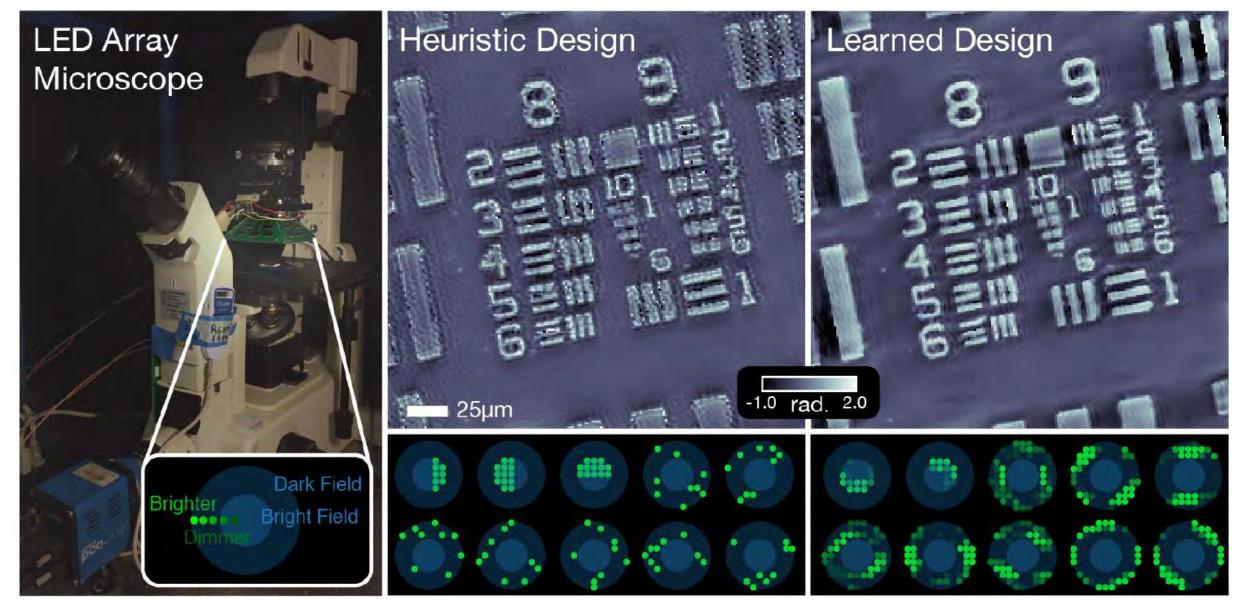
<u>Question 3:</u> How far can we push the concept of end-to-end design before the optimization landscape becomes prohibitive? We don't know!

Learning multiple LED patterns for Fourier Ptychography



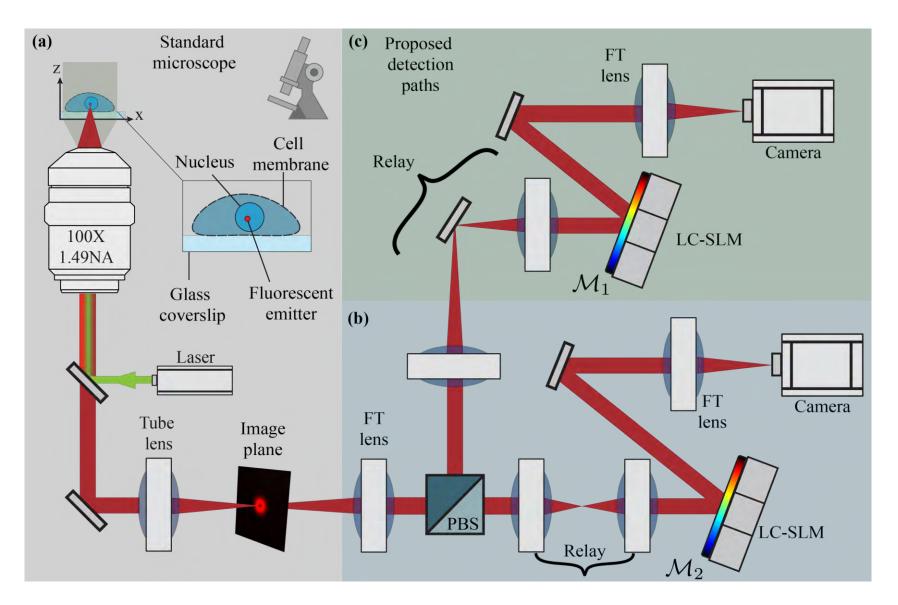
Kellman et al., IEEE Trans. on Comp. Imaging (2019)

Learning multiple LED patterns for Fourier Ptychography

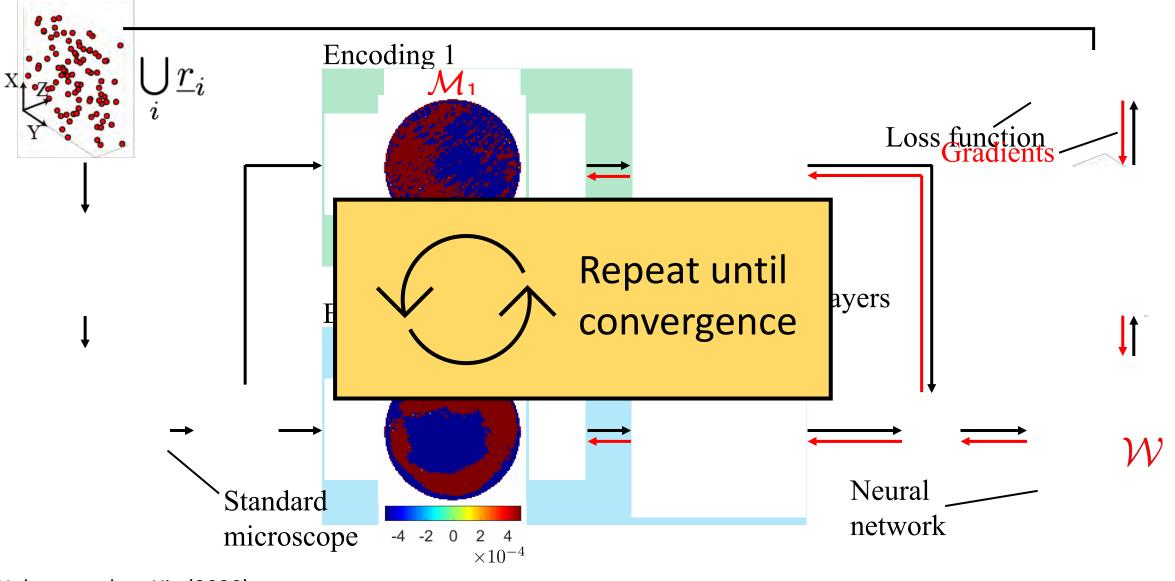


Kellman et al., IEEE Trans. on Comp. Imaging (2019)

Can we go beyond a single camera?



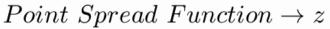
Design both cameras via backpropagation through physics



Fourier plane

Iteration 0

Image plane



0.6

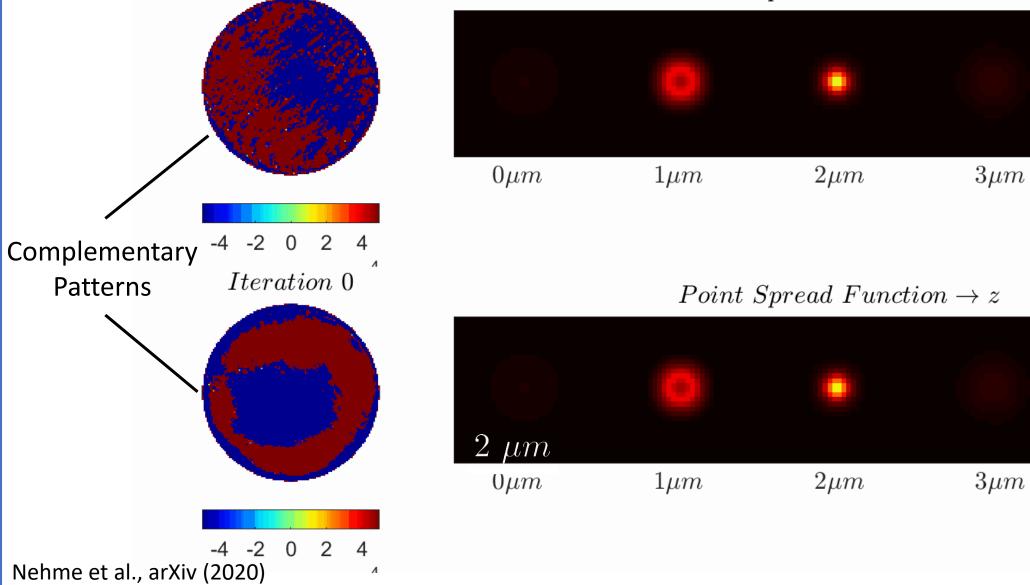
0

0.6

0

 $4\mu m$

 $4\mu m$

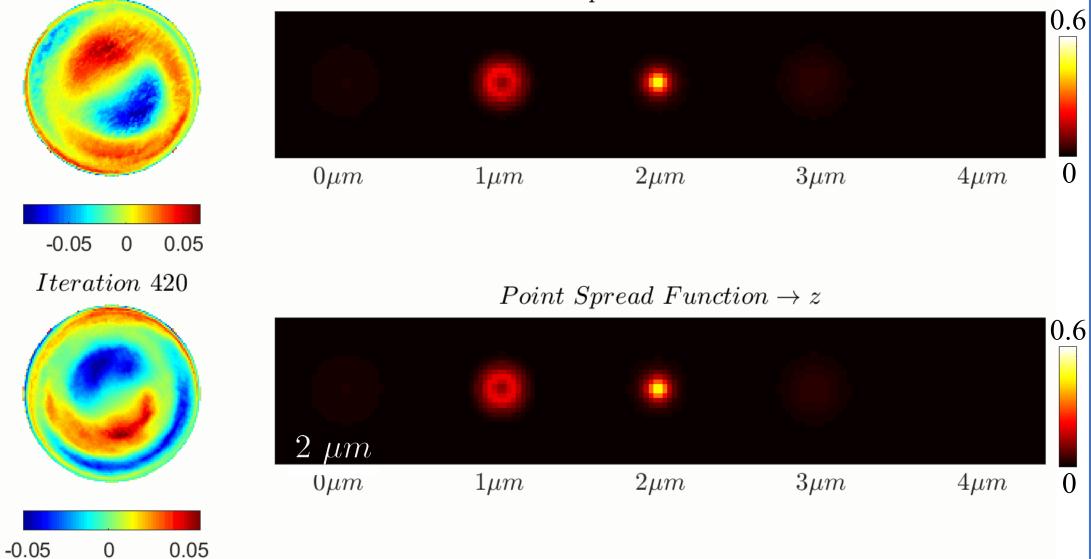


Fourier plane

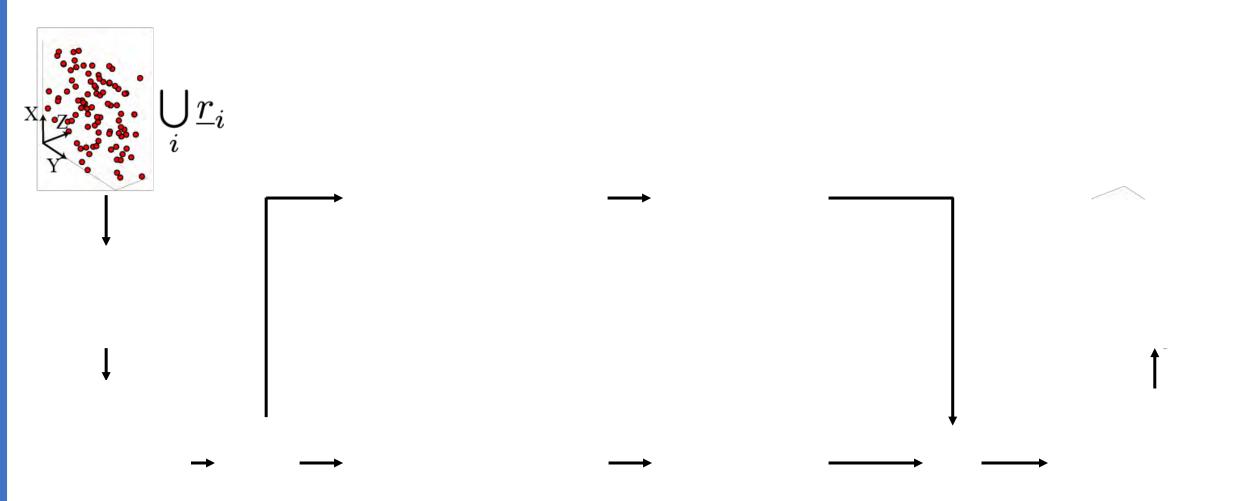
Iteration 420

Image plane

Point Spread Function $\rightarrow z$

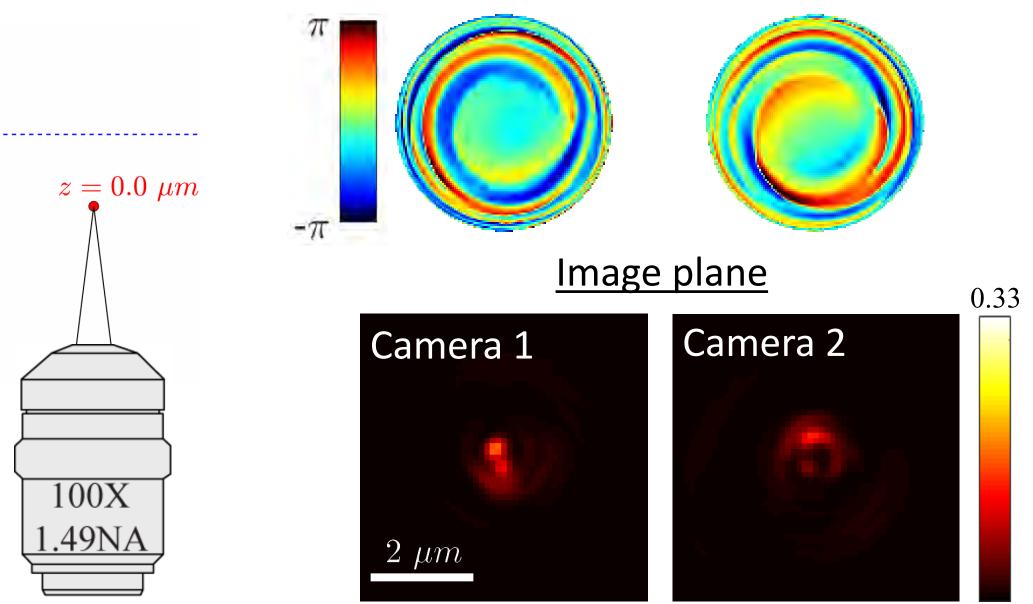


Jointly optimized "encoder-decoder"

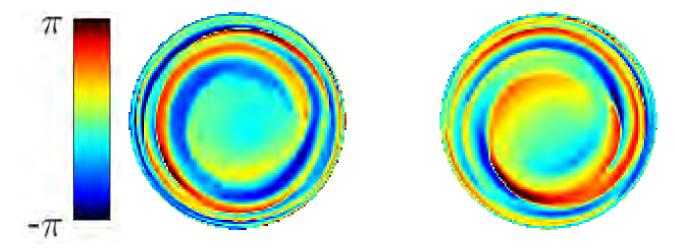


Point Source

Fourier plane



Fourier plane



Complementary lobes

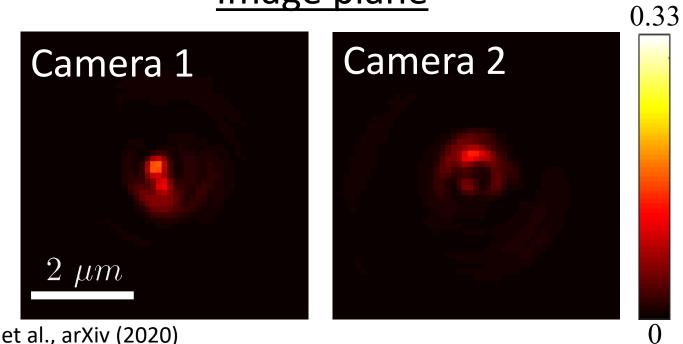
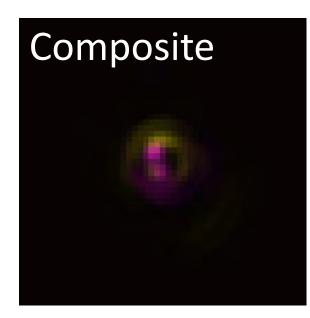
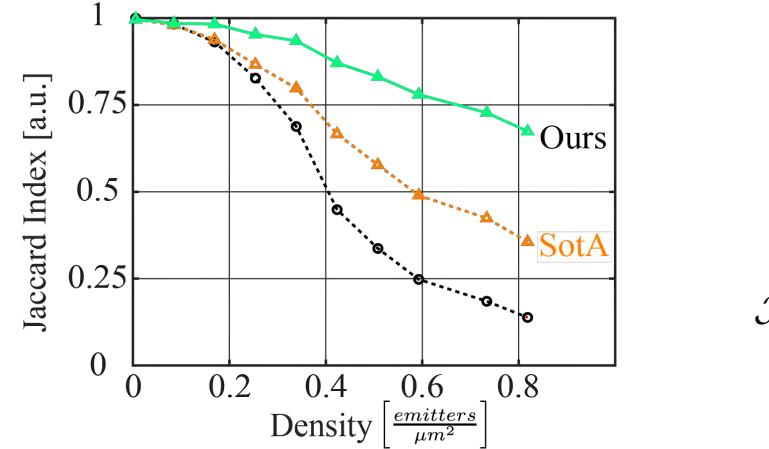
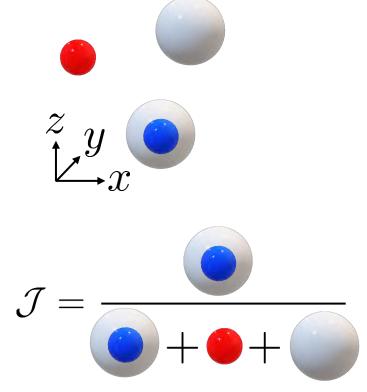


Image plane

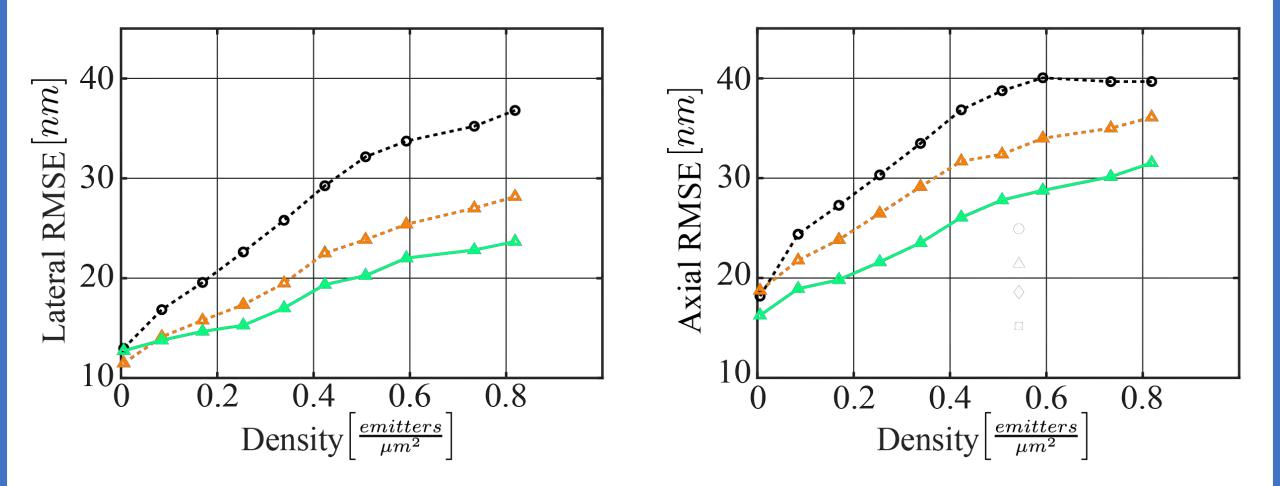


State-of-the-art results in detection

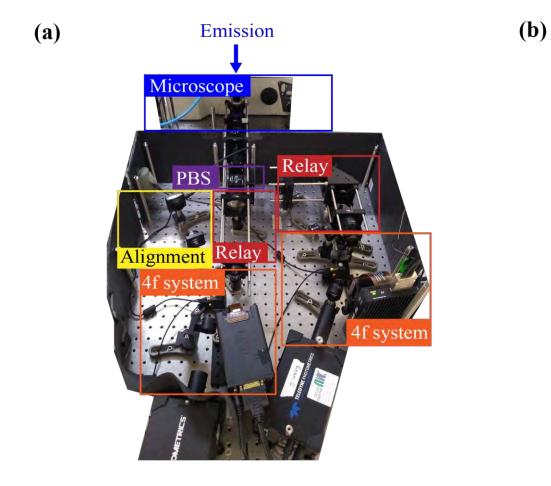


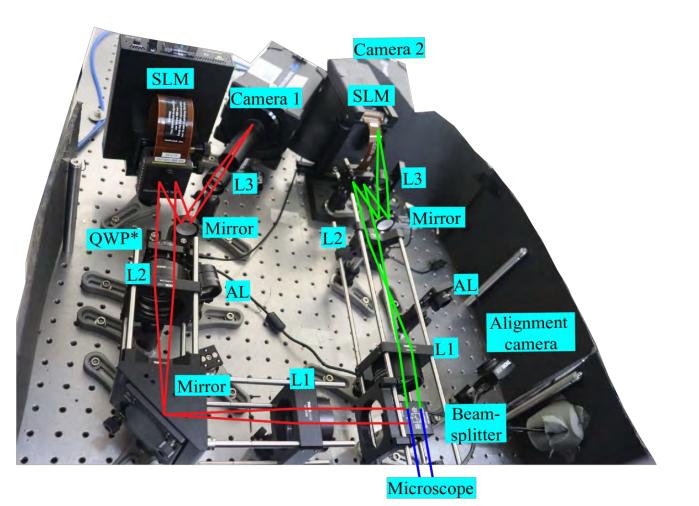


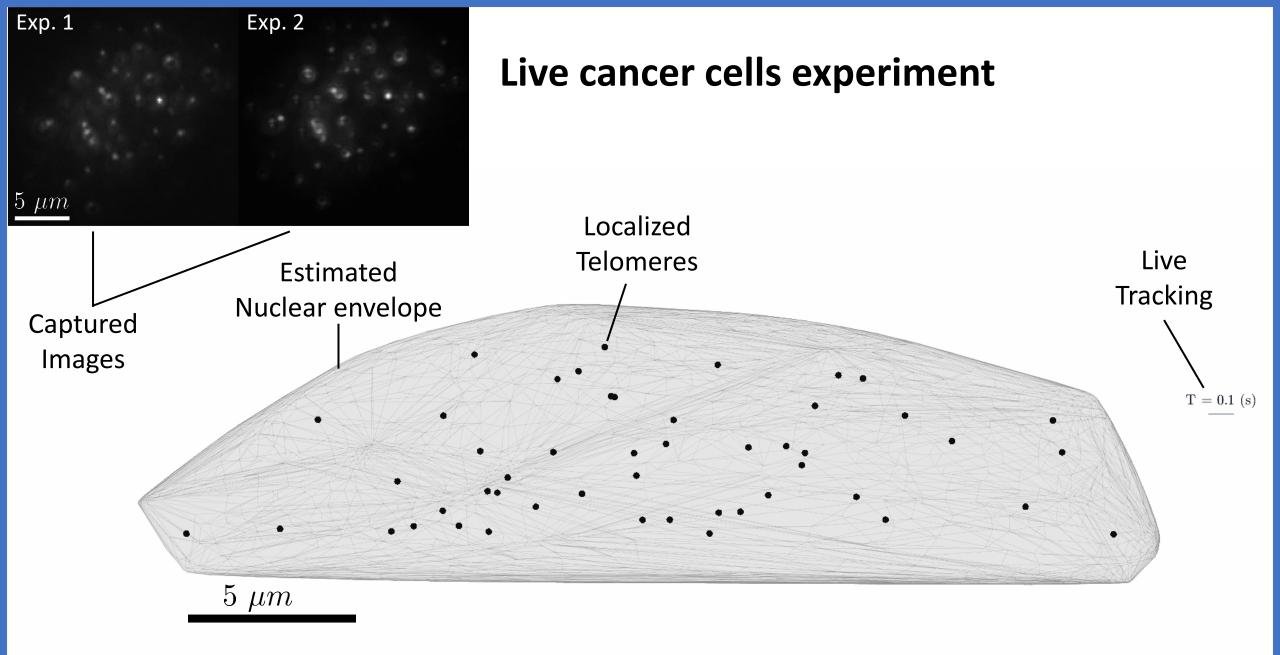
State-of-the-art results in precision

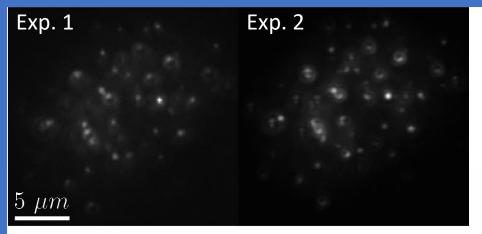


Experimental implementation with 2 LC-SLMs

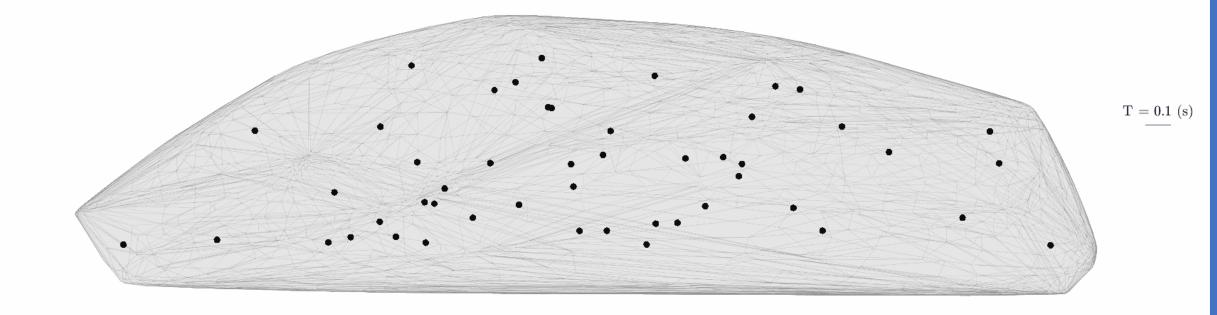








Live 3D tracking of telomeres diffusing in a single cell nucleus



Outline

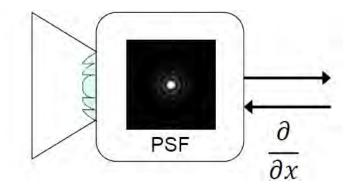
Autoencoder interpretation

Learning dense 3D imaging

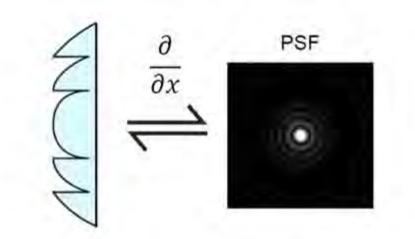
Generality to higher level tasks

Multi-measurement systems

Beyond microscopy

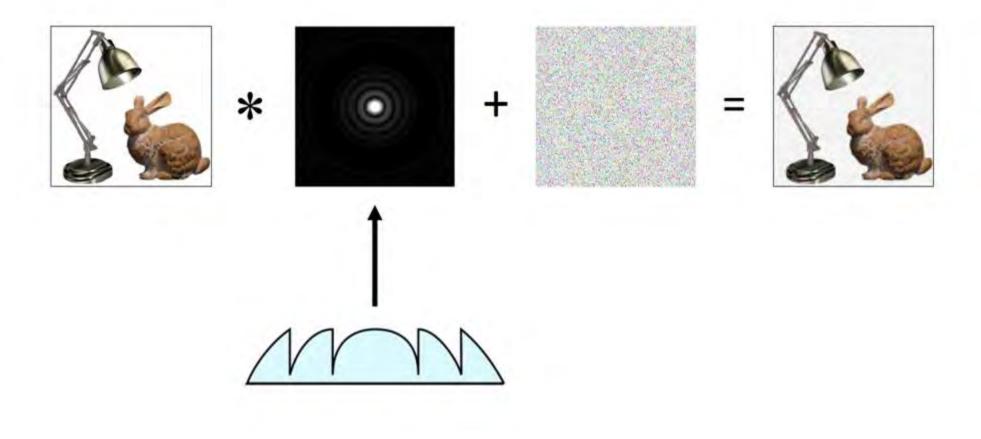


A differentiable optics model

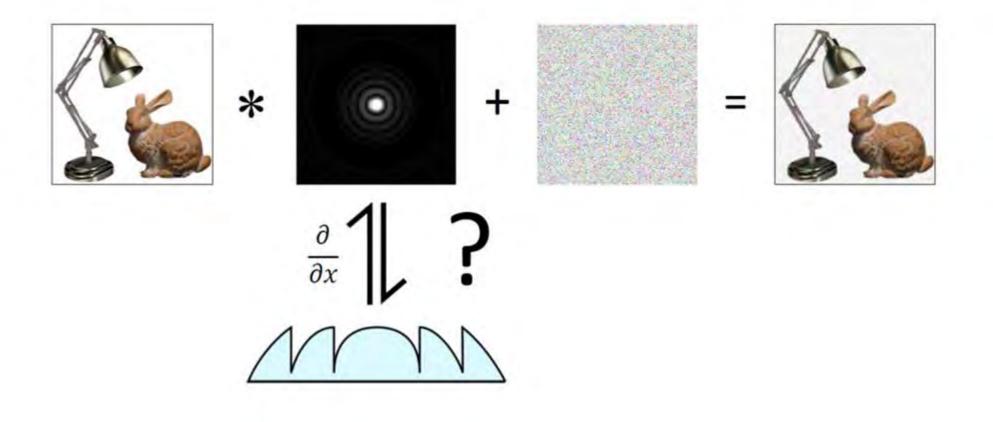


Wave Optics PSF simulator

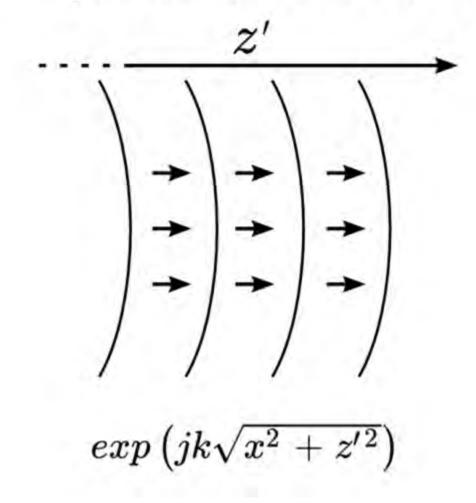
Image formation model



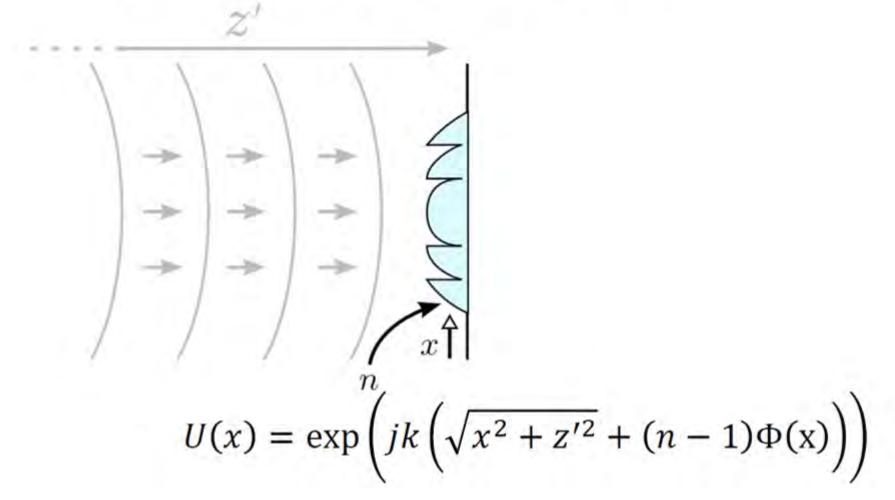
How does the optical element map to the PSF?



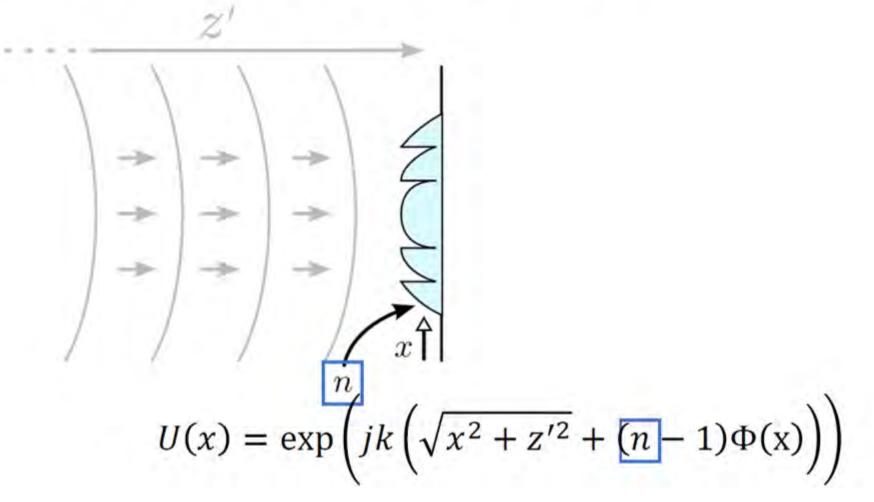
Spherical wave from point source



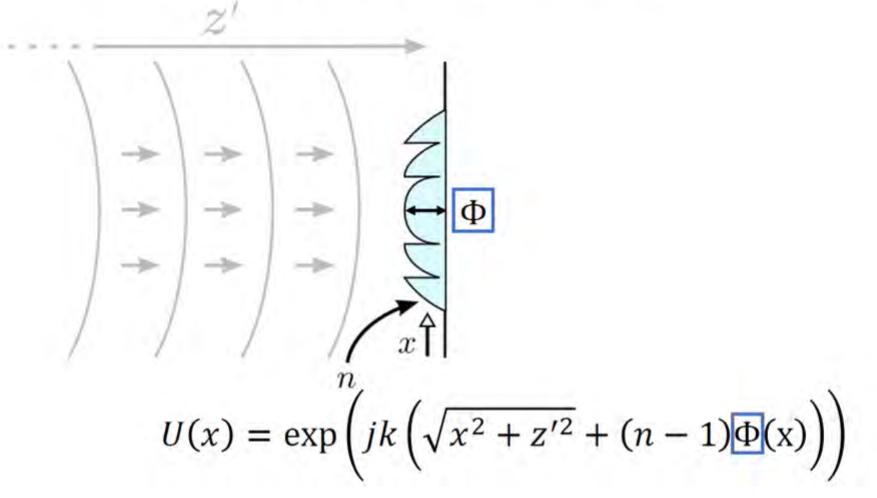
Phaseshift by optical element



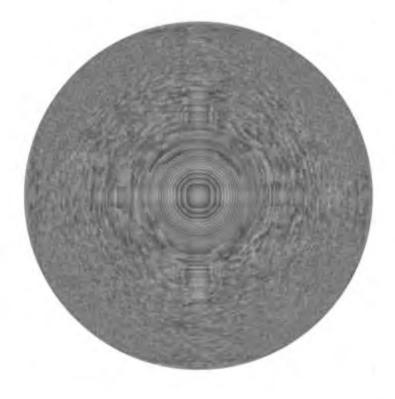
Phaseshift by optical element



Phaseshift by optical element

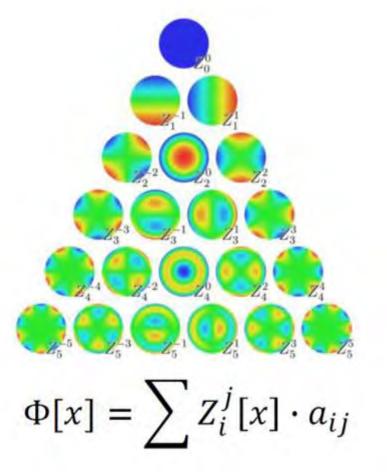


Height Map parameterization Zernike basis parameterization (diffractive)

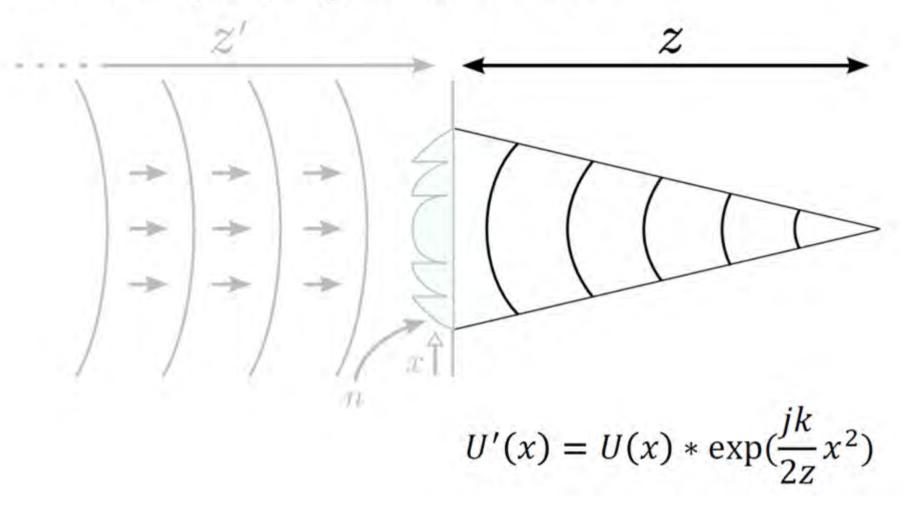


$$\Phi[x] = [[a_{11}, a_{12}, \dots], \dots]$$

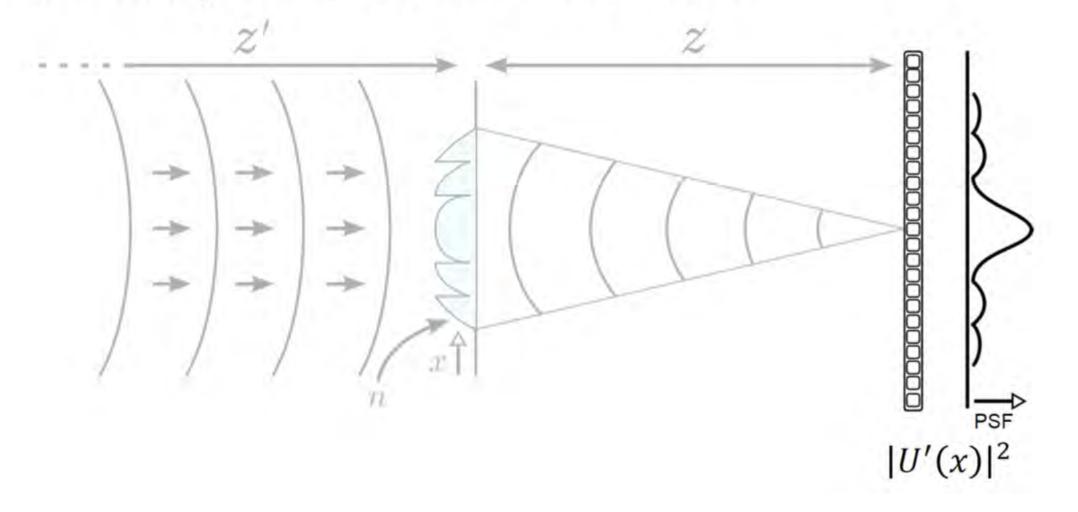
(refractive)

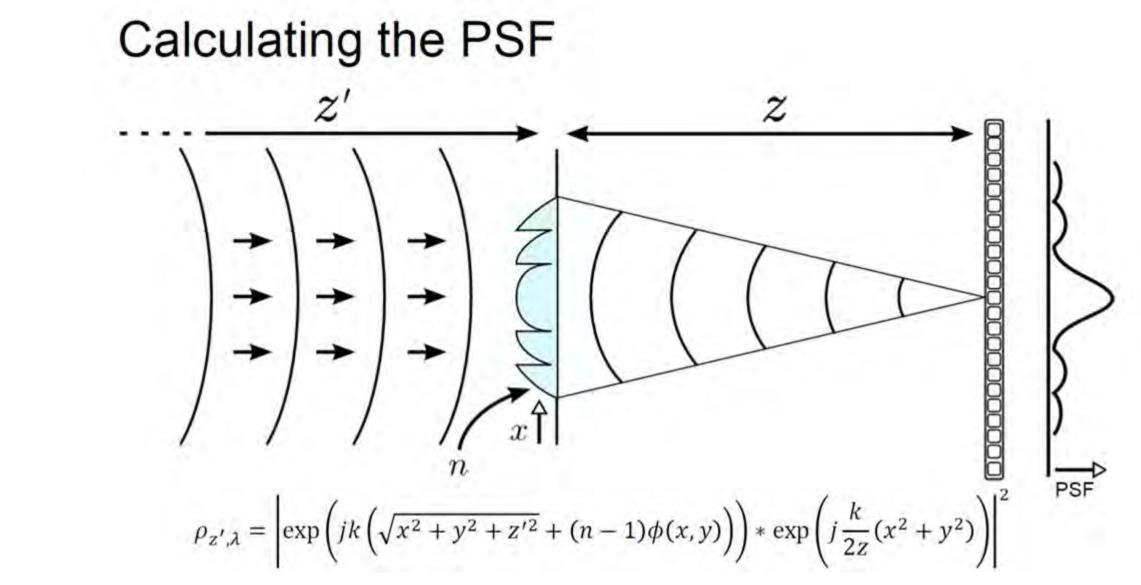


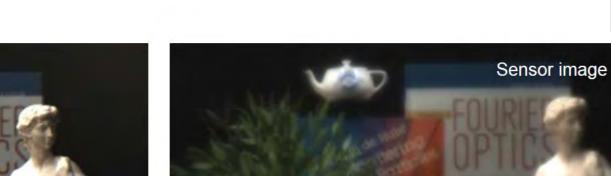
Fresnel propagation to sensor



Intensity measurement at sensor







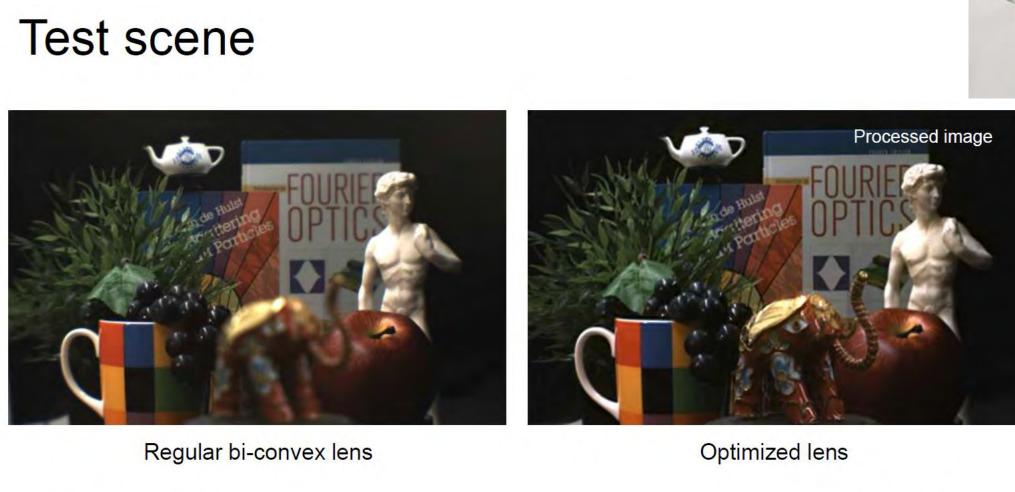
Extended Depth of Field (EDOF) imaging

Test scene

Optimized lens

Elephant (0.5m) Book (2.0m)

Causti



.....

Causti

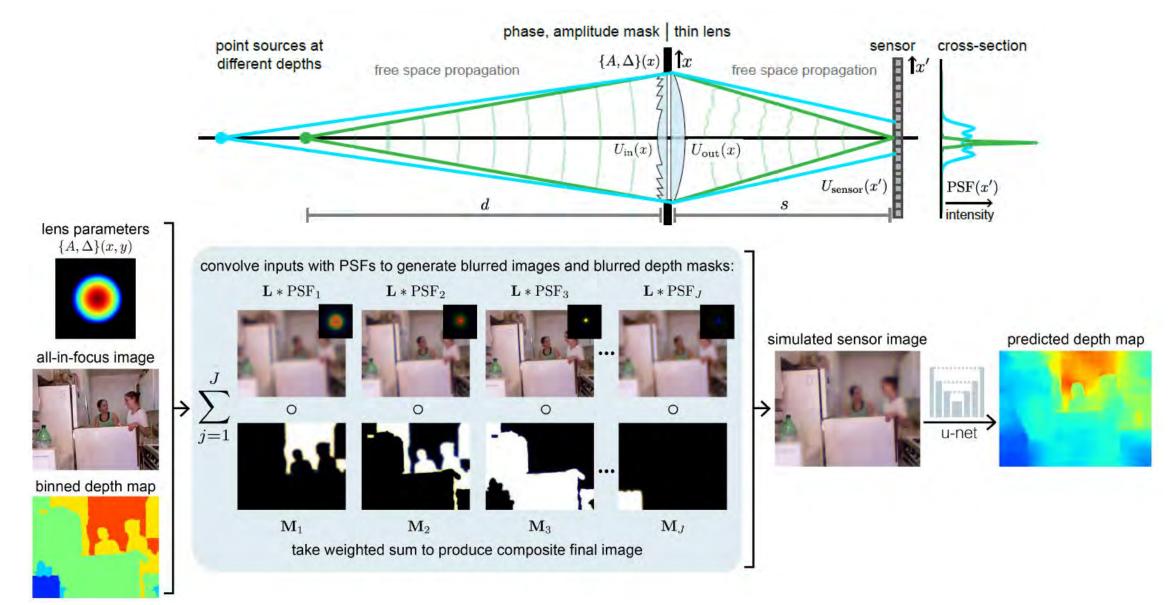
Book (2.0m)

Extended Depth of Field (EDOF) imaging

Sitzmann et al., SIGGRAPH (2018)

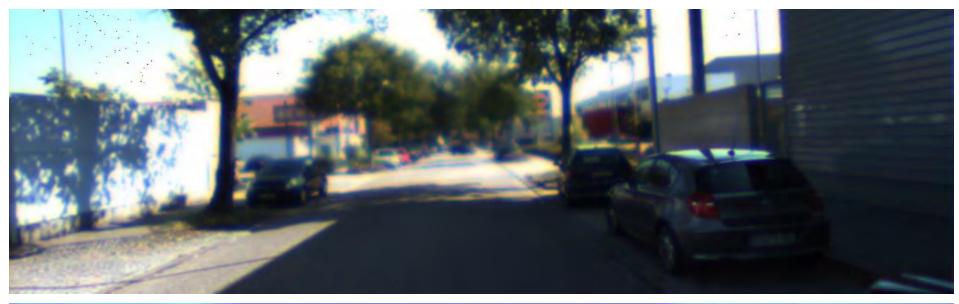
Elephant (0.5m)

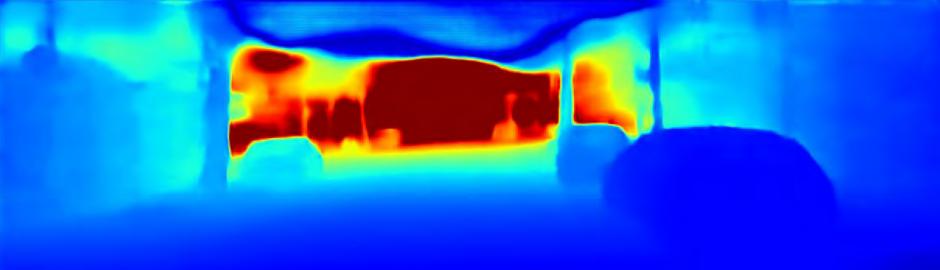
Monocular depth estimation and 3D object detection



Chang et al., ICCV (2019)

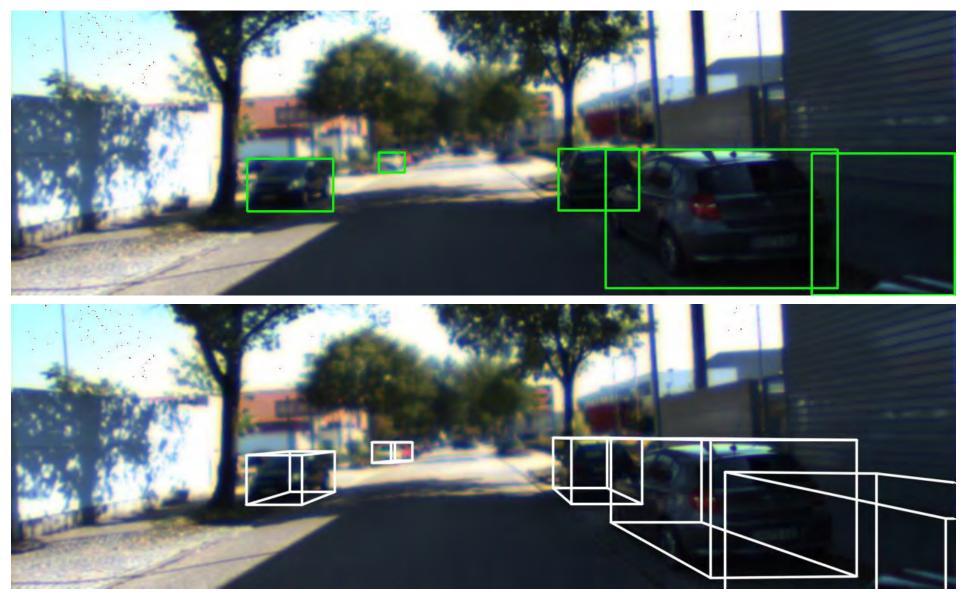
Monocular depth estimation and 3D object detection





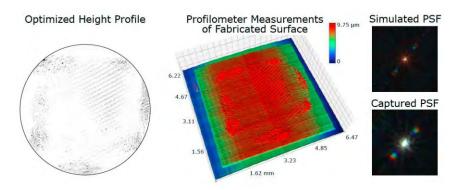
Chang et al., ICCV (2019)

Monocular depth estimation and 3D object detection



Chang et al., ICCV (2019)

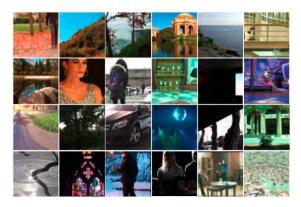
High-dynamic range imaging

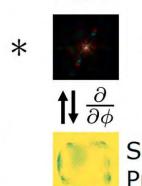


Loss

 $\stackrel{\widehat{x}}{\underset{\frac{\partial \mathcal{L}}{\partial \widehat{x}}}{\overleftarrow{x}}} \mathcal{L}$

HDR Training Dataset





 $\mathsf{PSF}\,h$

Sensor Model

 $\begin{array}{c} & \underset{\partial}{\partial} \\ \frac{\partial}{\partial \phi} \\ \end{array} \begin{array}{c} f(\cdot) \\ \frac{\partial}{\partial h} \\ \eta \\ \end{array}$ Surface
Profile ϕ

E2E Measurement E2E Reconstruction

 $rac{\partial}{\partial y}$

U-Net CNN

LDR Image

0 EV

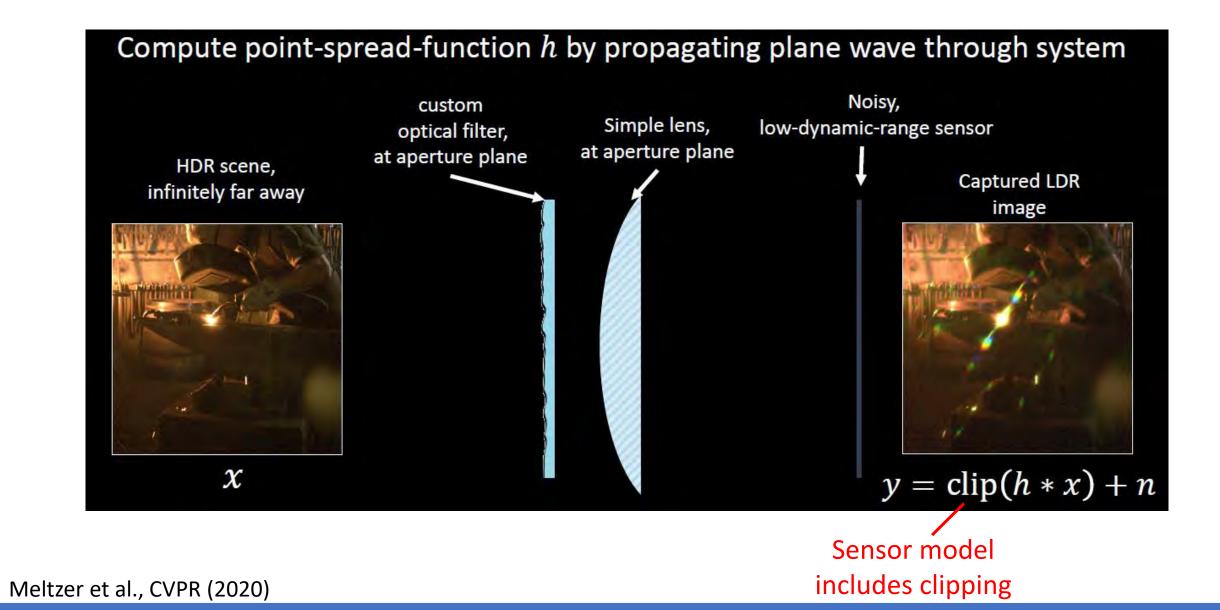
0 EV

-2.3 EV

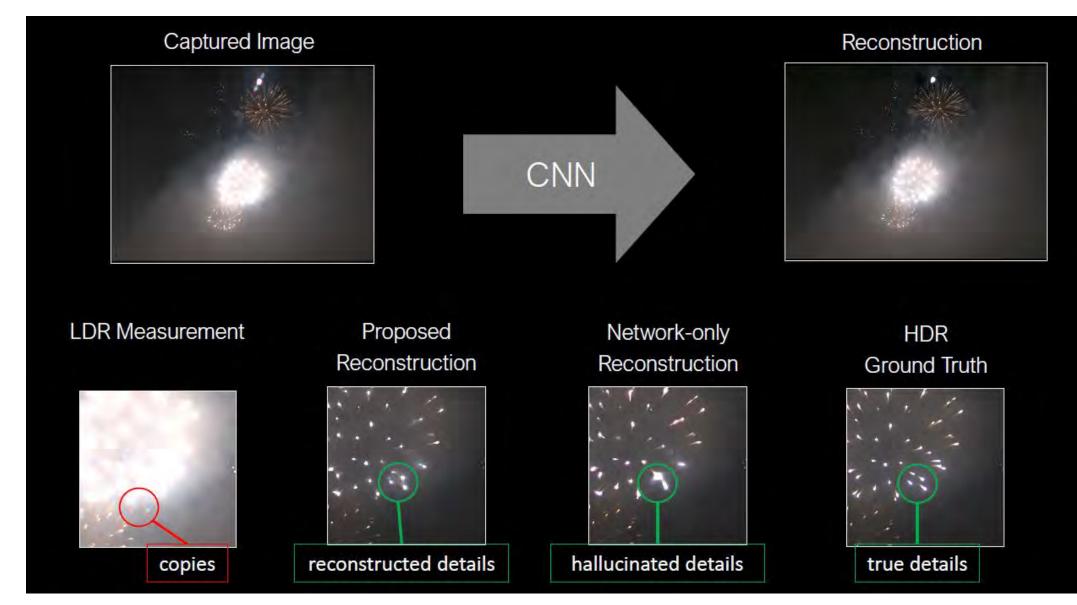
Meltzer et al., CVPR (2020)

0 EV

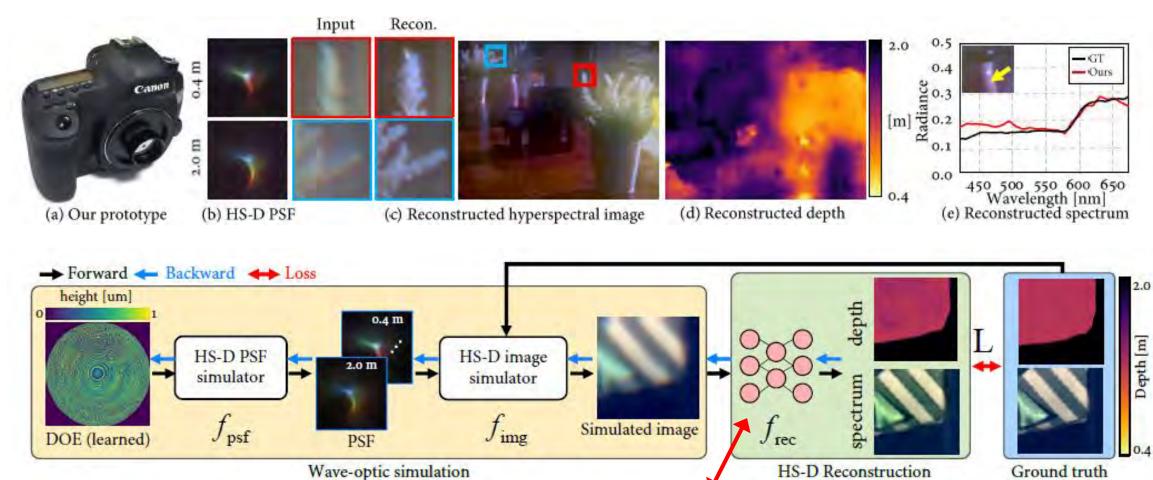
High-dynamic range imaging



High-dynamic range imaging

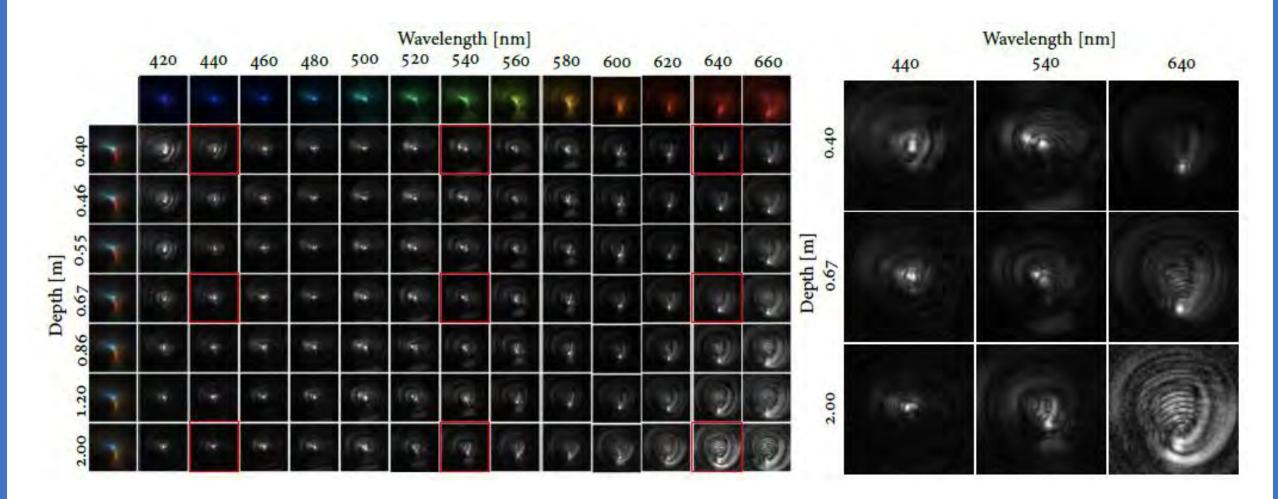


Meltzer et al., CVPR (2020)

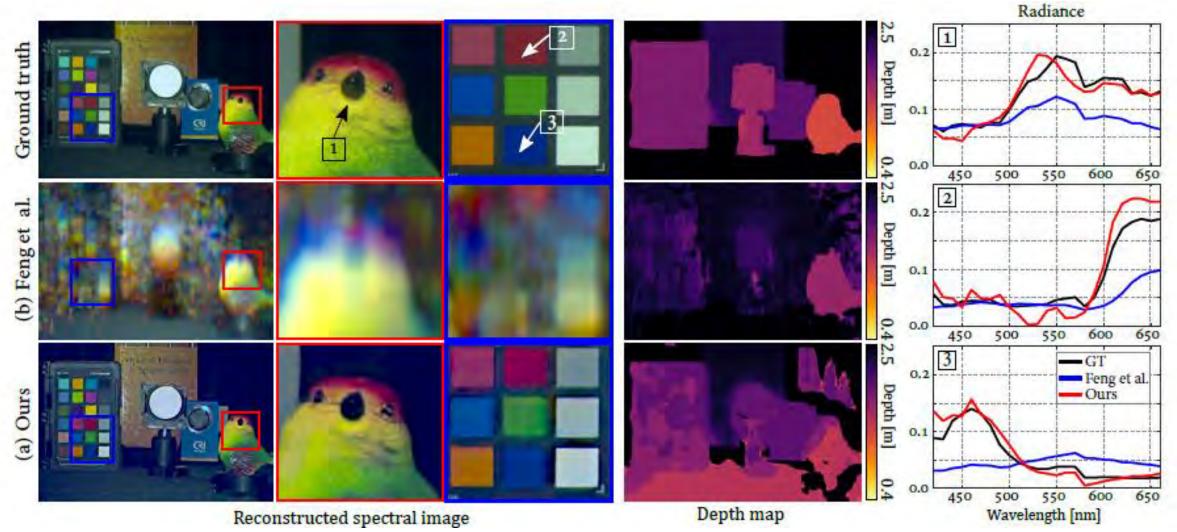


Patch size: 256 128 64 32 16 16 32 64 128 256 8 Output Depth spectral upsampling & addition Skip connection 512 64 128 256 Output Input 128 256 512 1024 512 256 128 64 32 25

Encoding more than a single physical quantity: Wavelength + Depth.



GT from simulation..



Real captures didn't work out as great..

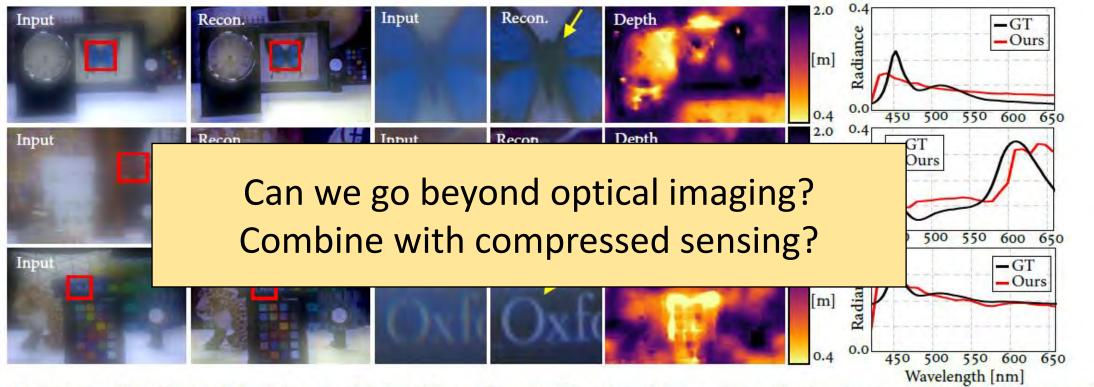
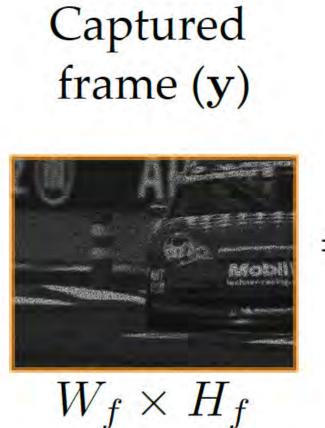
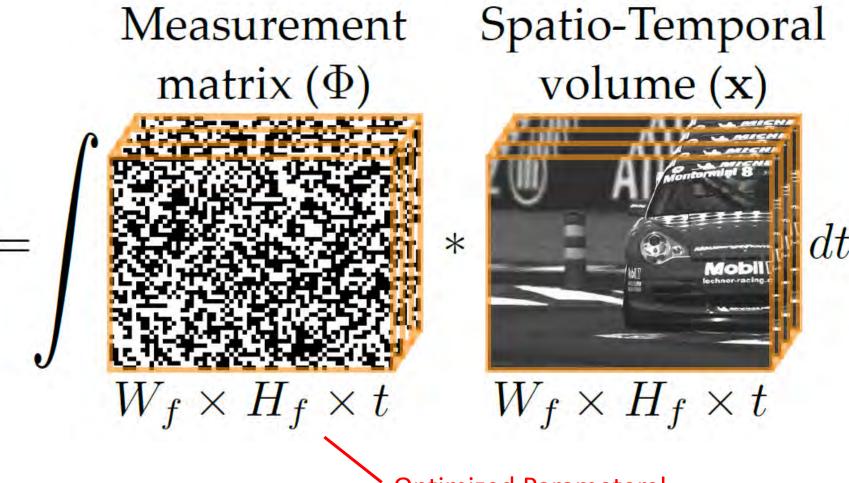


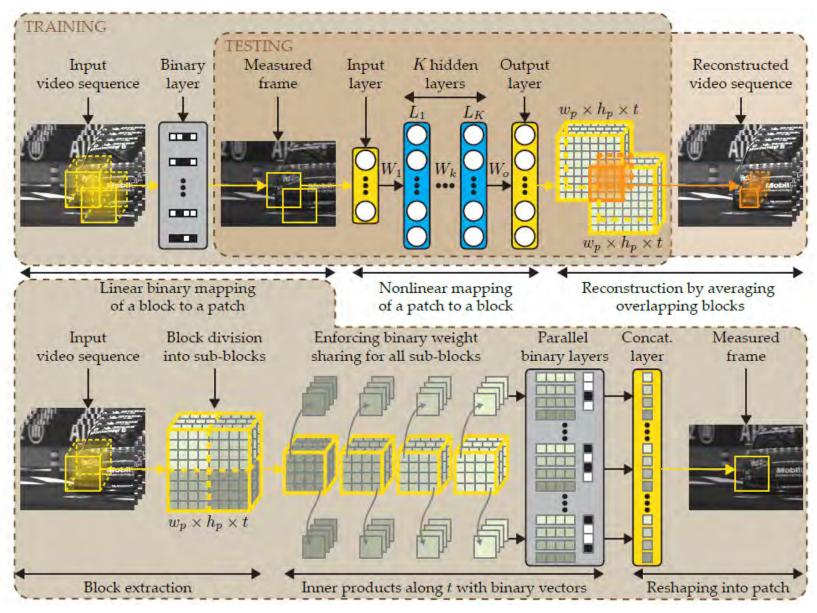
Fig. 15. Reconstructed hyperspectral-depth images of real-world, casual scenes. We captured these scenes with our prototype and compare the normalized radiance of resulting HS-D data with the ground truth measured by a spectroradiometer at points indicated by yellow arrows.





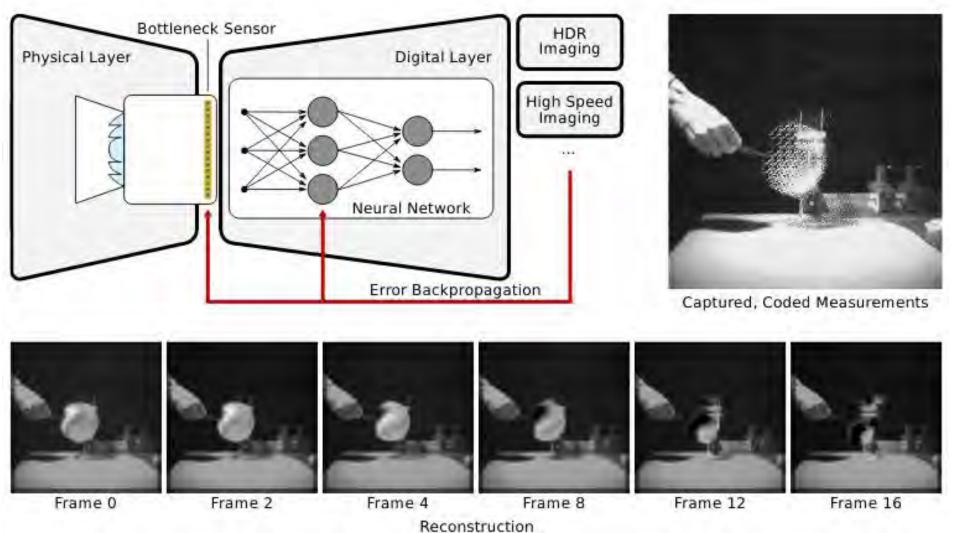
Optimized Parameters!

Iliadis et al., Digital Signal Processing (2020)

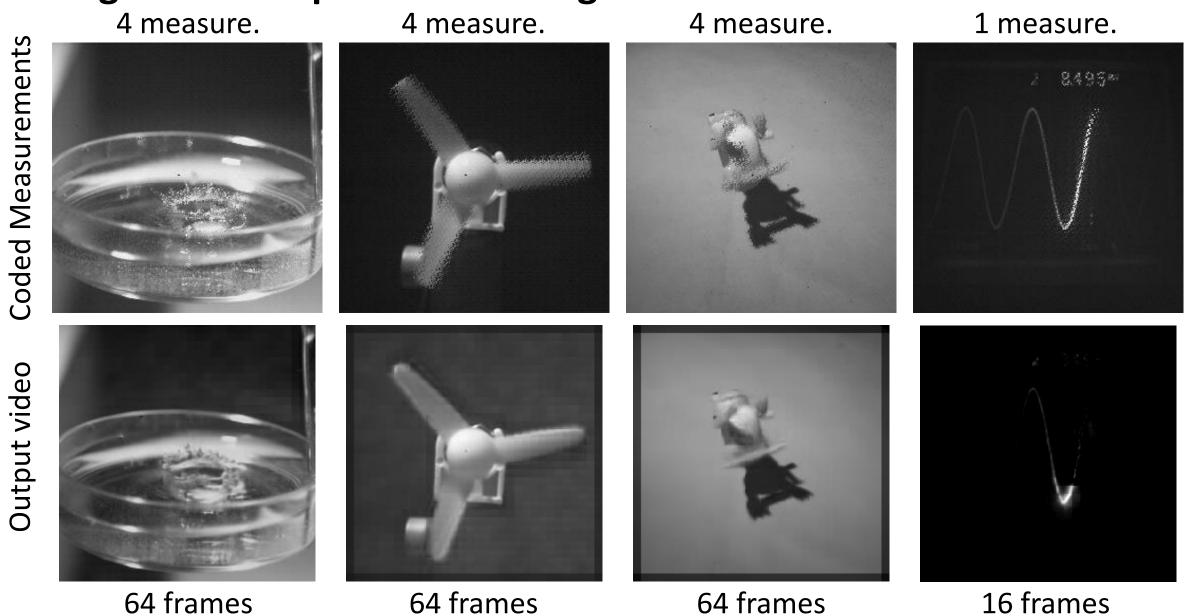


Iliadis et al., Digital Signal Processing (2020)

Similar idea only not binary and combines dynamic range considerations



Martel et al., ICCP (2020)



64 frames Martel et al., ICCP (2020)

64 frames

If you are interested in such techniques

me Submit Dates Team Sponsors Statements Privacy Policy

ICCP 2021 is taking place at the Technion! (Assuming COVID allows it...Otherwise Zoom)

References

Horstmeyer, Roarke, Richard Y. Chen, Barbara Kappes, and Benjamin Judkewitz. "Convolutional neural networks that teach microscopes how to image." *arXiv preprint arXiv:1709.07223* (2017).

Muthumbi, Alex, Amey Chaware, Kanghyun Kim, Kevin C. Zhou, Pavan Chandra Konda, Richard Chen, Benjamin Judkewitz, Andreas Erdmann, Barbara Kappes, and Roarke Horstmeyer. "Learned sensing: jointly optimized microscope hardware for accurate image classification." *Biomedical Optics Express* 10, no. 12 (2019): 6351-6369.

Hershko, Eran, Lucien E. Weiss, Tomer Michaeli, and Yoav Shechtman. "Multicolor localization microscopy and point-spread-function engineering by deep learning." *Optics express* 27, no. 5 (2019): 6158-6183.

Kellman, Michael R., Emrah Bostan, Nicole A. Repina, and Laura Waller. "Physics-based learned design: Optimized codedillumination for quantitative phase imaging." *IEEE Transactions on Computational Imaging* 5, no. 3 (2019): 344-353.

Nehme, Elias, Daniel Freedman, Racheli Gordon, Boris Ferdman, Lucien E. Weiss, Onit Alalouf, Tal Naor, Reut Orange, Tomer Michaeli, and Yoav Shechtman. "DeepSTORM3D: dense 3D localization microscopy and PSF design by deep learning." *Nature Methods* 17, no. 7 (2020): 734-740.

Nehme, Elias, Boris Ferdman, Lucien E. Weiss, Tal Naor, Daniel Freedman, Tomer Michaeli, and Yoav Shechtman. "Learning an optimal PSF-pair for ultra-dense 3D localization microscopy." *arXiv preprint arXiv:2009.14303* (2020).

Peng, Yifan, Ashok Veeraraghavan, Wolfgang Heidrich, and Gordon Wetzstein. "Deep optics: joint design of optics and image recovery algorithms for domain specific cameras." In ACM SIGGRAPH 2020 Courses, pp. 1-133. 2020.

Wetzstein, Gordon, Aydogan Ozcan, Sylvain Gigan, Shanhui Fan, Dirk Englund, Marin Soljačić, Cornelia Denz, David AB Miller, and Demetri Psaltis. "Inference in artificial intelligence with deep optics and photonics." *Nature* 588, no. 7836 (2020): 39-47.

And much more....