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A Experimental details

Architectures In all experiments, we used a simple U-Net [2, 11] architecture with four downsam-
pling/upsampling levels. Downsampling was achieved using 2 x 2 Maxpooling, and upsampling was
performed using resize-convolutions [10] with nearest-neighbor interpolation. The input image is
first projected to 32 feature channels using two conv layers. Then, at each level, the encoder halves
the spatial resolution and doubles the number of channels using two conv layers to result in 32, 64,
128, and 256 channels at levels 1 to 4 with the output of 4 being the encoder’s bottleneck. The final
output is given by a 1 x 1 convolution reducing the number of channels to 1 for gray-scale images
and to 3 for RGB images. Throughout the network, we used LeakyReLU activations with a negative
slope of 0.1 for non-linearities and instance normalization to z-score feature activations. For training
NPPC to wrap around pre-trained mean estimators, we used the same U-Net and only changed the
number of output filters at the last layer to be K or 3K for gray-scale or RGB images, respectively.
The resulting output channels were then reshaped to K independent images constituting w, ..., Wgk.
While we are aware of more advanced U-Net variants such as [3, 9, 12], these improvements are
orthogonal to NPPC. Therefore, in this work, we kept it as simple as possible.

Per-task details In the super-resolution task we upsampled the low-resolution image using nearest
neighbor interpolation prior to feeding it to the network. For the posterior mean prediction, we only
learned the required residual from the input to produce the prediction. Similarly, for the inpainting
task, we only learned the missing part and produced the prediction by summing the input with the
masked output to not waste capacity. For all face models, we learned the directions on full images
of resolution 256 x 256. On the other hand, for the biological image-to-image translation task, we
did not use residual learning as the input and output are not similar. In addition, we learned the
directions on 64 x 64 patches cropped from the full 1024 x 1024 images, as cell information tends to
be local. Our architecture is fully convolutional, and hence at test time, we tested on bigger patches
of 128 x 128 as shown in Fig. 6 in the main text, with more examples in Appendix D.

Optimization For all experiments with used the Adam optimizer [6] with an initial learning rate of
0.001, and 8; = 0.9, B2 = 0.999. For the CelebA-HQ experiments, the learning rate was dropped by
a factor of 10 if the validation loss stagnated for more than 5 epochs, and the minimum learning rate
was 5 - 1075, For other tasks, we did not use this scheduler, as the results were roughly the same with
or without dropping the learning rate. The batch size and the number of epochs were tuned per task
according to available GPU memory: batch size of 128 and 300 epochs for MNIST, 16 and 50 for
CelebA-HQ, and 64 and 1800 for the biological dataset. When wrapping around a fixed posterior
mean predictor, it took about 20 minutes, 5 hours, and 2 hours to train NPPC on MNIST, CelebA-HQ,
and the biological data, respectively. In cases where NPPC also predicts the mean jointly with the
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(b) Ramping up A2 at T=1000.

Figure Al: Scheduling \: for a fixed £ = 0. In (a) we visualize the optimization steps while
estimating the PCs and the variances at the same time, as opposed to ramping up A, after 1000 steps
in (b). Notice that at step 7' = 1000, the estimated PCs in (a) (blue and green arrows) are still not
aligned with the ground truth PCs compared to (b), due to the optimization of their norms. Eventually,
after 7' = 4000 steps both strategies converge to the same solution.

directions, it took roughly 2x longer (e.g., ~40 minutes for MNIST) due to a more expressive model
and the scheduling explained next.

Jointly predicting & and scheduling \;, Ao Training NPPC to predict both the posterior mean &
and the PCs wy, . .., wk with their variances o7, . .., o7 requires delicate scheduling. The reason
for this instability is that for PCA to work properly the data needs to be centered with zero mean.
Hence, during the early iterations when the mean estimate hasn’t converged yet, estimating the PCs
and the variances along them is challenging. In the extreme case of a trivial mean estimate & = 0,
the first PC converges to the mean and hence bears little meaning with respect to our purpose. To
remedy this, we can ramp up the loss functions sequentially; i.e., initially only £,, is on, and after 20
epochs we turn on the PCs and variances loss functions. However, turning both losses £,, and £, at
the same time would lead to a similar conflicting behavior, as in the early iterations the model will try
to optimize the variances along random directions. Hence, while we empirically find this to work
given enough time for convergence, we opted to ramp up A, after another 20 epochs such that the
PCs are almost converged, and only their norm is being optimized. In Fig. A1 we visualize this effect
in a 2D toy example of correlated Gaussian samples. Note that predicting both the mean and the
directions requires an architecture with enough capacity to handle both tasks (see Fig. A2), especially
for severely ill-posed problems. Therefore, for our CelebA-HQ and biological dataset experiments,
we focused on a two-step setting where the mean estimate is first learned using a separate U-Net, and
afterward, the result is wrapped around with NPPC predicting only the PCs and the variances. We
found this strategy to require a significantly lighter model (e.g., 4 x on MNIST denoising), while also
stabilizing training and mitigating the need for scheduling A; and A,.

Loss normalization Learning the PCs and the variances using (4) and (5) is straightforward.
Nonetheless, to standardize the loss values across tasks and datasets, we used a slightly modified loss
by reweighting the terms for the i example with the error norm ||e; |; i.e., for (4) we divided the term

lwy, (yi, &i;¢) " €:|? by |le;]|2, and for (5) we divided the inner term by ||e;||%. This normalization
has two benefits: 1. It standardizes the loss values by the difficulty of the task at hand on a per-sample
basis. Meaning, for harder samples the PCs are expected to capture more of the error norm while
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Figure A2: Joint learning of & and w,, ..., wx. Here we present the results of training a single
model to predict both the mean & and the PCs w1, ..., wg on the task of denoising handwritten

digits. While the resulting model is able to achieve similar results to two separate models (one for
estimating the mean and one for estimating the PCs), this necessitated a U-net with double the number
of channels compared to the model used in Fig. 5a, leading to an architecture with approximately 4 x
the number of parameters.

being allowed an error margin in estimating the variances. 2. This facilitates a constant set of weights
A1 = 1, Ay = 1 across tasks, thus overcoming the need for expensive hyperparameter tuning.

Predicting per-pixel variance For jointly predicting a mean estimate & and a per-pixel variance
map 67 (e.g., in Fig. 1a), we trained a U-Net with two outputs to minimize the loss function

Loerpine (D,0) = > & (y::60) — will3 + |67 (i 0) — (& (1::6) —:)°5. (AD)
(m“inD)

Note that this is slightly different from the standard maximum likelihood approach for predicting &
(e.g., as in [5]), where the loss is given by

2 (yi; 0) — z; |3 .
Ly (D, 0) = Z H (&yg( )0) 2 +log &7 (y; 6). (A2)
(xi,y:€D) o\

Nonetheless, as previously suggested in numerous works (e.g., [1]), we found the MLE approach not
stable and difficult to optimize even when reparameterizing and predicting s; = log 2. Therefore,
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(c) Eyes inpainting.

Figure A3: Per-pixel variance maps for CelebA-HQ. Here we show representative per-pixel
standard deviation maps for different tasks on CelebA-HQ. Intuitively, areas with high variance
correspond to edges (e.g., (a)), and uncertain shapes/colors (e.g., (b) and (c)). However, as explained
earlier, these on their own convey little information regarding the different possibilities.

in similar spirits to the loss employed to predict the error norm in [1], we optimized (A1) instead.
In Fig. A3 we show representative estimated & maps on the tasks of 8 x noisy super-resolution and
inpainting from the CelebA-HQ experiments.

B Analytical posterior for Gaussian mixture denoising

In Figure 3 and Table 1, we compared NPPC to the GT posterior for a Gaussian mixture prior with 2
components. Here we provide the closed-form expressions for the analytically derived posterior and
its two first moments for completeness. The denoising task we assumed was y = x + n, where x
comes from a mixture of L = 2 Gaussians, p(x) = Zle TN (x; e, E¢), and n ~ N (+;0,021) is
a white Gaussian noise. Let ¢ be a random variable taking values in {1, ..., L} with probabilities
{m1,...,7}. Then we can write the posterior by invoking the law of total probability conditioned
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Figure A4: Denoising samples from a 100-dimensional Gaussian mixture model. (a) Gaussian

mixture means. (b) Covariance matrix of each component. (c) Examined test sample (x;, y;) (note

that the GT posterior sample x; is only presented for illustration and is unknown to NPPC). (d)

Comparison of the estimated and GT posterior means for the test input y; in (c). (¢) Comparison of
the GT (blue) and estimated (dashed black) first 12 PCs scaled by their (respective) GT/estimated o.
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where we denoted

@ = N(y; i, B + 021),

fri = pi + (i + 020" (y — )

=3 - (2 4 o2)7s,. (A4)
As evident in Fig. 3 and also in Equation (A3), the GT posterior is itself a Gaussian mixture with

updated parameters. However, to simplify calculations for the Wasserstein 2-distance comparisons
in Table 1, we approximated the GT posterior using a Gaussian with the same first 2 moments,
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With this approximation the Wasserstein 2-distance to the estimated Gaussian constructed by NPPC,
p(xly) = N(fixly, Exy = W.W,T), where W, has 6wy, in its kth column, can be efficiently
computed using the closed-form expression

dw(p(a:|y)7ﬁ(w|y))2 = ||H’x|y - ﬂx|y||g +Tr (Ex\y + 23x|y - 2(2i{32x|y2i{j)1/2) (A6)
Figure A4 visualizes the 100-dimensional Gaussian mixture with L = 2 components referred to in
Table 1. The component means (A4a) were chosen such that ;11 = — o, both with equal weights
7, = 7o = 0.5, and the same low-rank covariance matrix £, = Xy = QQ " +1I with rank(Q) = 12.
Similar to the 2D case, the noise is assumed to be white Gaussian with a per-dimension variance of
02 = 100. As demonstrated previously in 2D, NPPC is also able to recover the top K = 12 PCs and
variances accurately in the high-dimensional case.

C Comparison to posterior samplers

In Figure AS, we plot representative comparisons from Table 2 using K = 5 PCs as bar plots. The
error bars signify a 95% confidence interval constructed using the standard error of the mean. Note
that in all tested experiments, NPPC achieved comparable results within the confidence interval of the
respective baseline. Moreover, for the task of noisy super-resolution, we observe that only 5 PCs are
not enough to capture a significant portion of the error norm (neither by NPPC nor by DDRM [4]). On
the other hand, for the task of inpainting, both NPPC and RePaint [8] were able to span a significant
portion of the error. To gain a better insight into this phenomenon, in Fig. A6 we plot the fraction of
residual error variance against the number of PCs using the posterior samples of DDRM and RePaint.
These plots were generated by computing PCA on 100 samples from DDRM and RePaint for each
input image. The result suggests that for the task of noisy super-resolution, the error covariance has
a wider spread, and the decay rate is significantly slower than for inpainting. For example, using
K = 10 PCs, the fraction of unexplained variance for super-resolution is = 0.8 compared to =~ 0.4
for inpainting. This result is not surprising as the optimal number of PCs K is task-dependent and
is expected to vary based on the complexity of the posterior. To better exemplify this point, in
appendix D.1 we demonstrate the result of NPPC on the task of (face) image colorization.
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Figure A5: Comparison to posterior samplers. Error bars denote a 95% confidence interval
constructed using the standard error of the mean. In all tasks (including noiseless super-resolution
omitted here for brevity), the performance of NPPC was within a 95% confidence interval around the
mean of the respective baseline, sometimes even leading to better results (e.g., (a) and (b)).
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Figure A6: Fraction of residual error magnitude vs the number of PCs. Here we visualize the
decay in the fraction of unexplained variance (of the error) as more principal components are added.
Note that for the task of super-resolution, the decay is significantly slower compared to the task of
inpainting. This suggests that multiple PCs roughly capture the same amount of variance, hence
explaining the orthogonality of the subspace found by NPPC compared to posterior sampling.

D Additional results

D.1 Image colorization

Inverse problems in imaging vary in their level of difficulty, dictating the complexity of the respective
posterior. NPPC is particularly suited for tasks that exhibit strong correlations between output pixels,
such that few PCs faithfully span the posterior covariance. One example of such a task is image
colorization, where given a grayscale image y, a model is trained to restore the RGB color image .
While this task is severely ill-posed, with proper cues and priors encoded in the form of training
examples, neural models are able to predict plausible colorizations [7, 13]. Nonetheless, for image
regions with multiple possible colorizations, a model trained to minimize the MSE will inevitably
regress to the mean producing shades of gray and reflecting dataset bias (e.g., average skin and hair
color). Figures A7 and A8 demonstrate the application of NPPC to the problem of face colorization on
the CelebA-HQ dataset. First, we trained a model to regress the RGB image « from the corresponding
grayscale input y. Afterward, we trained NPPC to wrap around the mean estimate &, and output
the first K = 5 PCs. Here, the resulting PCs efficiently capture the majority of the error variance,
enabling high-quality reconstructions of the ground truth on test samples, by adding the projected
error é; = WiWiTei to the mean estimate &;. Note that this result uses privileged information
(i.e., e;) unavailable at test time, and is presented here merely to reinforce our intuition that NPPC is
efficient for posteriors with a spectrally-concentrated covariance. In general, using PCs to visualize
uncertainty is very appealing as we can efficiently communicate the different possibilities to the user
with a few sliders. However, for a large number of PCs K, this strategy becomes impractical and
tedious, warranting further research of condensed alternative representations of uncertainty.

D.2 Sequential vs joint PC learning

As explained in Sec. 3.2, we use Stopgrad to recover the solution of sequential training while
learning the PCs jointly. Although this is guaranteed in theory, whether the two are equivalent in
practice still warrants empirical validation. To realize sequential training without significantly altering
the number of parameters used to predict the PCs, we trained multiple models with an increasing
number of PCs K = 1,2,...,5, and compared the PCs backward across different models. The
results for the task of image colorization on CelebA-HQ confirm that end-to-end training leads to
approximately the same PCs as sequential training (see Fig. A9). In addition, the resulting first 5
PCs when training two NNs with 5/10 components were very similar (up to a flipped sign) with an
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Figure A7: Face colorization on CelebA-HQ. Here we showcase the result of NPPC applied to the
task of image colorization, i.e., going from a grayscale measurement y to an RGB image x. The
resulting PCs span various semantic changes including hair, skin and background colors.



Figure A8: Reconstructing test samples using 5 PCs. Here we test the approximation error of
the first K = 5 PCs found by NPPC by reconstructing the ground truth error e; = &; — x; of test
samples. The reconstructed error &; = V[/'Z-VVZ-T e; is added to the mean estimate &; to approximate
the ground truth RGB image x;. Note that at test time we do not have access to e;, therefore this
result is only a sanity check to verify our PCs.

average cosine similarity of 0.9 across the first 3 PCs, and 0.83 overall. For later PCs (e.g. the 4" and
5 the similarity slightly drops as the error variance along multiple PCs is roughly the same (see
Fig. A10), and hence the ordering of the PCs becomes less distinct and prune to optimization errors.
These results further validate that NPPC consistently outputs the PCs in the correct order.

D.3 Predicted variance validation

As mentioned in Sec. 3, there exists no ground truth uncertainty in image restoration datasets. This is
because each element in the dataset is comprised of a single posterior sample x; from py |y (X|y = ¥;)
for each observed image y;. This is the reason why beyond toy examples we evaluated the quality of
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Figure A9: PC consistency as a function of K in image colorization. (a) Sequential and end-to-end
PC training are compared using 5 models outputting an increasing number of PCs K = 1,...,5.
Each row presents K PCs predicted by a model with K outputs applied to the inputs at the top right.
The PCs were backward consistent as judged by their absolute cosine similarity over the entire test
set (see boxplots at the bottom). (b) The results were similar when comparing the first 5 PCs of
two models with K = 5/10 outputs, with the last 2 PCs being slightly less consistent due to the
remaining PCs having roughly the same variance.

the PCs indirectly using the residual error magnitude ||e — W W T e||5, which is a function of the
subspace spanned by the PCs W . Similarly, for the k™ predicted variance 0%, we only have the norm
of a single projected error |w), e;| per measurement y;, and hence no ground truth variance either.
Please note that, unlike per-pixel methods, in our case, we cannot compare the aleatoric uncertainty
and the test error directly (e.g. RMSE vs. fraction of pixels above an uncertainty threshold), because
our method does not assume pixels are independent (an incorrect assumption in images). Nonetheless,
we further verified the predicted variances by comparing the projected test error w,I e; to the predicted
variance o} for every test point y; (see Fig. A10). The results indicate that NPPC estimates the
standard deviation with high accuracy across tasks and datasets.

D.4 More examples

Here we provide more results on each of the tasks demonstrated in Section 4.
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Handwritten digits Figure A11 demonstrates more denoising examples for handwritten digits. At
severe noise levels of 0. = 1.0, the mean reconstruction is often ambiguous with regards to digit
identity (e.g., a “7” can become a “9” as in the upper left panel). Similarly, for extreme inpainting of
70% of the pixels in Fig. A12, a ““5” can become a “3” (top right), a “4” can become a “1” (bottom
left), etc.

Faces Figures A13 shows additional examples for the task of noisy 8x super-resolution. The
resulting PCs capture different semantic properties such as eye/mouth shape, eyebrows position, and
chin/jawline placement. Figures A14 and A15 show additional results for inpainting of the eyes and
the mouth, respectively. The corresponding PCs manipulate the content in the missing pixels such
that the eyes (Fig. A14) are more open/closed, the eyebrows are thicker/thinner etc. Similarly, for
mouth inpainting (Fig. A15), the mouth could be open/closed, the jaw could be lower/higher, and the
neck area is manipulated to be wider/thinner, etc.

Biological image-to-image translation Figures A16 and A17 show additional results on the biolog-
ical image-to-image translation task. Note that the first PC is essentially a bias component, suggesting
that the absolute intensity of the nuclear stains is uncertain and cannot be inferred accurately using
the measurement y. The remaining PCs capture more semantic content by highlighting uncertain cell
shapes e.g., in the case of dividing (small ellipsoidal) cells and navigating the existence/disappearance
of ambiguous cells.
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Figure A13: CelebA-HQ noisy 8 x super-resolution.
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Figure A14: CelebA-HQ eyes inpainting.
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Figure A15: CelebA-HQ mouth inpainting.
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Figure A16: Biological image-to-image translation results.
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Figure A17: More biological image-to-image translation results.
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